|
|
The Influences of Mixed-Phase Ice on Corona Inception Voltage of Bundle Conductor |
Zhang Man,Jiang Xingliang,Shu Lichun,Hu Jianlin,Chen Ji,Guo Yujun |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Mixed-phase ice disaster in the winter of china had happened frequently, which affects the operation of transmission line seriously. Iced surface on conductor becomes extremely rough and the growth of ice tree and icicle can distort the electrical field greatly, which will lead to the decreasing of the conductor corona onset voltage. Although many domestic and foreign researchers has investigated the phenomenon of conductor corona, most of them studied the actual bundle conductor just by using the scaled conductor model, and the analysis of mixed-phase ice form influent the regularity of conductor’s corona onset voltage are not enough. Therefore, a series test has been conducted after icing the mixed- phase ice in the artificial climate chamber to study the influence of AC corona to single, double and triple bundle conductors, and then using the UV imaging technology and I-U curve fitting measurement to analyze the inception voltage. Finally, the electrical field model of icing tree was established to research the corona characteristics of conductor by combining the iced morphology. The results show that mixed-phase ice can decrease the conductor inception voltage value below 60% of the consequence under no icing conditions. And the corona onset voltage will decrease to be saturated continually as the icing time increasing. In the same icing time, onset voltage of the conductor with more sub-conductors will obtain higher than the one with fewer sub-conductors. Icing morphology and the corona inception voltage does not vary with the freezing-water conductivity. The conclusion of this paper can lay foundations for designing the transmission line and the onset voltage calculation in mixed-phase iced area.
|
Received: 20 April 2013
Published: 13 April 2015
|
|
|
|
|
[1] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2001. [2] 杨永全. 近年电网冰灾事故分析及抗防对策[J]. 电力建设, 2008, 29(9): 35-37. Yang Yongquan. Analysis of recent icing-caused grid accidents and its countermeasures[J]. Electric Power Construction, 2008, 29(9): 35-37. [3] 曾晓毅, 刘军伟, 黄燕. 特高压交流输电意义分析[J]. 工程技术与产业经济, 2009, 8(2): 21-22. Zeng Xiaoyi, Liu Junwei, Huang Yan. Analysis of UHV AC transmission significance[J]. Science & Technology Association Forum, 2009, 8(2): 21-22. [4] 陈勇, 万启发, 霍锋, 等. 1000 kV 交流输电线路导线的电晕特性[J]. 高电压技术, 2007, 33(11): 43-45. Chen Yong, Wang Qifa, Huo Feng, et al. Corona characteristics of conductors for 1 000kV AC trans- mission lines[J]. High Voltage Engineering, 2007, 33(11): 43-45. [5] 蒋兴良, 杜珍, 莫文强, 等. 重庆地区输电线路导线覆冰特性[J]. 高电压技术, 2011, 37(12), 3065- 3069. Jiang Xingliang, Du Zhen, Mo Wenqiang, et al. Icing features of wire in chongqing region[J]. High Voltage Engineering, 2011, 37(12), 3065-3069. [6] 胡毅, 胡建勋, 刘庭. 我国南方地区电网大范围覆冰灾害的特点分析与防治措施[J]. 电力设备, 2008, 9(6): 1-4. Hu Yi, Hu Jianxun, Liu Ting. Analysis and counter- measures for large area icing accident on power grid in northern china[J]. Electrical Equipment, 2008, 9(6): 1-4. [7] 王秀玲, 杨嘉祥, 孙永鑫, 等. 架空线混合凇形成机理的数值解析[J]. 华东电力, 2008, 36(12): 26-29. Wang Xiuling, Yang Jiaxiang, Sun Yongxin, et al. Numerical simulations for formation mechanism of mixed-phase ice on overhead lines[J]. East China Electric Power, 2008, 36(12), 26-29. [8] Ndiaye I, Fofana I, Farzaneh M. Contribution to the study of the appearance and development of corona discharges on a surface of ice[C]. Canadian Conference on Electrical and Computer Engineering, 2003, 1: 639-642. [9] Liu Yong, Du B X. Recurrent plot analysis of leakage current on flashover performance of rime-iced composite insulator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010(s): 465-472. [10] 刘振亚. 特高压电网[M] . 北京: 中国经济出版社, 2005. [11] 刘文勋, 赵全江, 张瑚, 等. 1000kV特高压交流输电线路电晕损耗估算方法[J]. 电力建设, 2011, 32(10): 27-29. Liu Wenxun, Zhao Quanjiang, Zhang Hu, et al. Study on the corona loss estimate under the 1 000kV UHVAC transmission line[J]. Electric Power Cons- truction, 2011, 32(10): 27-29. [12] Lu Tiebing, Xiong Gaolin, Cui Xiang, et al. Analysis of corona onset electric field considering the effect of space charges[J]. IEEE Transactions on Magnetics, 2011(s): 1390-1393. [13] 陈健渝, 超高压输电线路的电磁辐射影响综述[J]. 电力环境保护, 1994, 14(4): 30-37. Chen Jianyu. Influence of electromagnetic radiation on the EHV transmission line[J]. Electric Power Enviromental Protection, 1994, 14(4): 30-37. [14] Sarma M P, Janischewskyj W. Electrostatic field of a system of parallel cylindrical conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(7): 1069-1079. [15] 刘有为, 李继红, 李斌. 空气密度和湿度对导线电晕特性的影响[J]. 电网技术, 1990, 14(4): 46-50. Liu Youwei, Li Jihong, Li Bin. Influence of air density and humidity on the corona performance of conductor [J]. Power System Technology, 1990, 14(4): 46-50. [16] Li Z X, Fan J B, Yin Y, et al. Numerical calculation of the negative onset corona voltage of high-voltage direct current bare overhead transmission condu- ctors[J]. Generation, Transmission & Distribution, IET. 2010(s): 1009-1015. [17] Ren Leijian, Liu Yunpeng, Lu jie, et al. Research on method to get corona inception electric-field intensity based on small corona cage[C]. 2009 Asia-Pacific Power and Energy Engineering Conference(APPEEC), 2009: 1-4. [18] Bian X M, Chen L, Yu D M, et al. Surface roughness effects on the corona discharge intensity of long-term operating conductors[J]. Applied Physics Letters, 2012, 101(17): 174103-174103-4. [19] Gildas H. Theoretical evaluation of Peek’s law[J]. IEEE Transactions. on Industry Applications, 1984, 20(6): 1647-1651. [20] 聂国一. 海拔高度对超高压送电线路导线截面选择的影响[J]. 电力建设, 1994, 15(3): 18-23. Nie Guoyi. The influence of altitude on choosing insulation of EHV transmission line[J]. Electric Power Construction, 1994, 15(3): 18-13. [21] 舒立春, 李特, 蒋兴良, 等. 交流电场强度对导线雾凇覆冰特性的影响[J]. 中国电机工程学报, 2012, 32(19): 140-147. Shu Lichun, Li Te, Jiang Xingliang, et al. Influences of AC electric field strength on conductor rime icing performance[J]. Proceedings of the CSEE, 2012, 32(19): 140-147. [22] 马斌, 周文俊, 汪涛, 等. 基于紫外成像技术的极不均匀电场电晕放电[J]. 高电压技术, 2006, 32(7): 13-16. Ma Bin, Zhou Wenjun, Wang Tao, et al. Corona discharge of the severe non-uniform electric field based on the UV-light imaging technology[J]. High Voltage Engineering, 2006, 32(7): 13-16. [23] 梁昆淼. 数学物理方法[M]. 3版. 北京: 高等教育出版社, 1998. |
|
|
|