|
|
Topology Detection of Grounding Grids Based on Derivative Method |
Wang Xiaoyu1,He Wei1,Yang Fan1,Zhu Liwei2,Liu Xingping3 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Zhejiang Electric Power Corporation Research Institute Hangzhou 310014 China; 3. Zhejiang Electric Power Corporation Power Supply Service Center Hangzhou 310014 China |
|
|
Abstract The magnetic inverse problem method is often used to diagnose the topology and corrosion broken of the grounding grids in existing research, but the solution process is usually very complex. This paper proposes a derivative method which can draw the topology of ground grids by injecting current into the ground grids, filtering and numerical differentiation for magnetic field of the surface. First, a shape function is introduced to describe the distribution of magnetic field which is parallel to the surface of grounding grids, after analyzing the principle of derivative method. Since its even-order derivatives contain main peaks, the 2nd- and 4th-order derivatives are chosen to detect the topology of grounding grids, and numerical example shows that the 2nd- and 4th-order derivative method can accurately diagnose the topology of current-carrying grids. Experimental result shows that the 2nd- order derivative method is recommended to use in practical application, while the 4th-order derivative method requires high accuracy measurement data. Thus, the derivative method can detect the position of grid branch in the measurement area, and hereby draw the topology of grounding grids with low error and less computation.
|
Received: 05 April 2013
Published: 13 April 2015
|
|
|
|
|
[1] Sverak J G, Dick W K, Dodds T H, et al. Safe substa- tion grounding-part I[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100: 4281-4290. [2] Sverak J G, Benson R V, Dick W K, et al. Safe substation grounding-part II[J]. IEEE Power Enginee- ring Review, 1982, 2: 53-53. [3] IEEE Std 80-2000, IEEE guide for safety in AC substation grounding[S]. 2000. [4] 刘渝根, 腾永禧, 陈先禄, 等. 接地网腐蚀的诊断方法研究[J]. 高电压技术, 2004, 30(6): 19-21. LiuYugeng, TengYongxi, Chen Xianlu, et al. A method for corrosion diagnosis of grounding grid[J]. High Voltage Engineering, 2004, 30(6): 19-21 [5] 刘建, 王建新, 王森. 一种改进的接地网故障诊断算法及测试方案评价[J]. 中国电机工程学报, 2005, 25(3): 71-77. Liu Jian, Wang Jianxin, Wang Sen. An improved algorithm of corrosion diagnosis for grounding grid & its evaluation[J]. Proceedings of the CSEE, 2005, 25(3): 71-77. [6] 刘建, 倪云峰, 王树奇, 等. 接地网的分块模型及分块故障诊断[J]. 高电压技术, 2011, 37(5): 1194- 1202. Liu Jian , Ni Yunfeng, Wang Shuqi , et al. Grounding grids corrosion diagnosis using a block dividing approach[J]. High Voltage Engineering, 2011, 37(5): 1194-1202. [7] 牛涛, 罗先觉, 王森, 等. 接地网腐蚀故障诊断可测性分析[J]. 电工技术学报, 2010, 25(6): 192-198. Niu Tao, Luo Xianjue, Wang Sen, et al. Testability analysis of corrosion diagnosis for grounding grids[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 192-198. [8] 许磊, 李琳. 基于电网络理论的变电站接地网腐蚀及断点诊断方法[J]. 电工技术学报, 2012, 27(10): 270-276. Xu Lei, Li Lin. Fault diagnosis for grounding grids based on electric network theory[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 270-276. [9] Dawalibi F P. Electromagnetic fields generated by overhead and buried short conductors Part 2—Grond conductor[J]. IEEE Transactions on Power Delivery, 1986, 1: 112-119. [10] Zhang Bo, Zhao ZhiBin, Cui Xiang. Diagnosis of breaks in substation’s grounding grid by using electro- magnetic method[J]. IEEE Transactions on Magnetics, 2002, 38(2): 473-476. [11] 刘洋, 崔翔, 赵志斌, 等. 基于电磁感应原理的变电站接地网腐蚀诊断方法[J]. 中国电机工程学报, 2009, 29(4): 97-103. Liu Yang, Cui Xiang, Zhao Zhibin, et al. Method of corrosion diagnosis of substations’ grounding grids based on electromagnetic induction theory[J]. Procee- dings of the CSEE, 2009, 29(4): 97-103. [12] 刘洋, 崔翔, 赵志斌, 等. 变电站接地网腐蚀诊断磁场检测系统的设计与应用[J]. 电工技术学报, 2009, 24(1): 176-182. Liu Yang, Cui Xiang, Zhao Zhibin, et al. Design and application of testing magnetic field system for corrosion diagnosis of grounding grids in substation [J]. Transactions of China Electrotechnical Society, 2009, 24(1): 176-182. [13] 何为, 史庆岩, 杨帆, 等. 接地网故障诊断的磁场逆问题求解方法[J]. 重庆大学学报, 2012, 9(35): 80-85. Hewei, Shi Qingyan, Yang Fan, et al. Computation method of magnetic field inverse problem on grounding grids fault diagnosis[J]. Journal of Chongqing University, 2012, 9(35): 80-85. [14] 刘洋, 崔翔, 赵志斌. 变电站接地网结构判断与缺陷诊断方法[J]. 中国电机工程学报, 2010, 30(24): 113-118. Liu Yang, Cui Xiang, Zhao Zhibin. Method of structure estimation and fault diagnosis of substations’ grounding grids[J]. Proceedings of the CSEE, 2010, 30(24): 113- 118. [15] 刘洋. 变电站接地网缺陷诊断方法和技术的研究[D]. 北京: 华北电力大学, 2008. [16] 云美厚, 纪阵宇, 崔景涛. 求导能否提高地震记录的分辨率[J]. 石油地球物理勘探, 1997, 32(5): 740-748. Yun Meihou, Ji Zhenyu , Cui Jingtao. Can derivation improve the resolution of seismogram[J]. Oil Geo- physical Prospecting, 1997, 32(5): 740-748. [17] Yu H, Ying X. Derivative seismic processing method for GPR data[C]. IEEE International in Geosciences and Remote Sensing, 1997, 1: 145-147. [18] J Erosolimski M , L Evacher L. A new method for fast calculation of Jacobian mat rices: automatic differentia- tion for power system simulation[J]. IEEE Transac- tions on Power Apparatus and Systems, 1994, 9(2): 700-706. [19] 王丹, 王成山. 基于数值微分法求导的分布式发电系统仿真算法[J]. 电力系统自动化, 2009, 33(17): 81-85. Wang Dan, Wang Chengshan. A stability simulation method of distributed generation system based on numerical differentiation method[J]. Automation of Electric Power Systems, 2009, 33(17): 81-85. [20] 严寒冰. 用微分法及Mori-Tanaka法求解复合泡沫塑料的有效模量[J]. 北京航空航天大学学报, 2000, 26(6): 688-690. Yan Hanbing. Determination of the effective modulus of the syntactic foam containing hollow sphere s by differential scheme and mori-tanaka method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(6): 688-690. [21] 田高友, 袁洪福, 褚小立, 等. 结合小波变换与微分法改善近红外光谱分析精度[J]. 光谱学与光谱分析, 2005, 25(4): 516-520. Tian Gaoyou, Yuan Hongfu, Chu Xiaoli, et al. Near infrared spectra(NIR) analysis of octane number by wavelet denoising-derivative method[J]. Spectroscopy and Spectral Analysis, 2005, 25(4): 516-520. |
|
|
|