|
|
A Method of Wide-Area Differential Protection |
Zhang Zhaoyun, Chen Wei, Zhang Zhe, Chen Deshu |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science & Technology Wuhan 430074 China |
|
|
Abstract The wide-area protection is one of the important directions for the development of relay protection, and wide-area differential protection is an important branch. In this paper, the overall architecture of the wide-area differential protection based on IEC61850 is proposed, the basic concepts of the differential ring is defined, and action criterion and method of the wide-area differential protection is proposed. The blocking conditions of the wide-area differential protection are described, and the dynamic extension of differential ring in case of a branch failure is analyzed. The wide-area differential protection based on the differential ring is effective solution to the existing failure protection easy to malfunction and the dead zone fault. Dynamic simulation system verifies the feasibility and correctness of the proposed method.
|
Received: 10 May 2013
Published: 18 June 2014
|
|
|
|
|
[1] 薛禹胜. 时空协调的大停电防御框架(一)从孤立防线到综合防御[J]. 电力系统自动化, 2006, 30(1): 1-9. Xue Yusheng. Space-time cooperative framework for defending blackouts part I from isolated defense lines to coordinated defending[J]. Automation of Electric Power Systems, 2006, 30(11): 1-9. [2] 刘道伟, 谢小荣, 穆钢, 等. 基于同步相量测量的电力系统在线电压稳定指标[J]. 中国电机工程学报, 2005, 25(1): 13-17. Liu Daowei, Xie Xiaorong, Mu Gang, et al. An on-line voltage stability index of power system based on synchronized phasor mesurement[J]. Proceedings of the CSEE, 2005, 25(1): 13-17. [3] Rajapakse A D, Gomez F, Nanayakkara K, et al. Rotor angle instability prediction using post-disturbance voltage trajectories[J]. IEEE Transactions on Power Systems, 2010, 25(2): 947-956. [4] Phadke A G, Thorp J S. Synchronized phasor measurements and their applications[M]. New York: Springer, 2008. [5] Kamwa I, Pradhan A K, Joos G. Adaptive phasor and frequency-tracking schemes for wide-area protection and control[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 744 - 753. [6] Adamiak M G, Apostolov A P, Begovic M M, et al. Wide area protection technology and infrastructures [J]. IEEE Transactions on Power Delivery, 2006, 21(2): 601-609. [7] Eissa M M, Masoud M E, Elanwar M M M. A novel backup wide area protection technique for power transmission grids using phasor measurement unit[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 270-278. [8] 何志勤, 张哲, 尹项根, 等. 基于故障电压比较的广域后备保护新算法[J]. 电工技术学报, 2012(7): 274-283. He Zhiqin, Zhang Zhe, Yin Xianggen, et al. A novel wide area backup protection algorithm based on fault voltage comparison[J]. Transactions of China Electrote- chnical Society, 2012(7): 274-283. [9] 和敬涵, 朱光磊, 薄志谦. 基于多Agent技术的电力系统集成保护[J]. 电工技术学报, 2007, 22(6): 141-147. He Jinghan, Zhu Guanglei, Bo Zhiqian. Integrated protection for power systems based on the multi-agent technology[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 141-147. [10] 尹项根, 汪旸, 张哲. 适应智能电网的有限广域继电保护分区与跳闸策略[J]. 中国电机工程学报, 2010, 30(7): . Yin Xianggen, Wang Yang, Zhang Zhe. Zone-division and tripping strategy for limited wide area protection adapting to smart grid[J]. Proceedings of the CSEE, 2010, 30(7): . [11] Su Sheng, Li K K, Chan W L, et al. Adaptive agent-based wide-area current differential protection system[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2111-2117. [12] Serizawa Y, Myoujin M, Kitamura K, et al. Wide-area current differential backup protection employing broadband communications and time transfer systems[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1046-1052. [13] 马静, 李金龙, 王增平, 等. 基于故障关联因子的新型广域后备保护[J]. 中国电机工程学报, 2010, 30(31): 100-107. Ma Jing, Li Jinlong, Wang Zengping, et a1. Wide- area back-up protection based on fault correlation factor[J]. Proceedings of the CSEE, 2010, 30(31): 100-107. [14] Tang J, McLaren P G. A wide area differential backup protection scheme for shipboard application[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1183- 1190. [15] Lin X N, Li Z T, Wu K C, et al. Principles and implementations of hierarchical region defensive systems of power grid[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 30-37. [16] 李振兴, 尹项根, 张哲, 等. 基于序电流相位比较和幅值比较的广域后备保护方法[J]. 电工技术学报, 2013(1): 242-250. Li Zhenxing, Yin Xianggen, Zhang Zhe, et al. Algorithm of wide-area protection on comparison of current phase and amplitude[J]. Transactions of China Electrotechnical Society, 2013(1): 242-250. [17] 汪旸, 尹项根, 张哲, 等. 基于遗传信息融合技术的广域继电保护[J]. 电工技术学报, 2010, 25(8): 174-179. Wang Yang, Yin Xianggen, Zhang Zhe, et a1. Wide area protection based on genetic information fusion technology[J]. Transactions of China Electrotechnical Society, 2010, 25(8): 174-179. [18] 李振兴, 尹项根, 张哲, 等. 基于综合阻抗比较原理的广域继电保护算法[J]. 电工技术学报, 2012, 27(8): 179-186. Li Zhenxing, Yin Xianggen, Zhang Zhe, et al. A study of wide-area protection algorithm based on integrated impedance comparison[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 179-186. [19] Miao S H, Liu P, Lin X N. An adaptive operating characteristic to improve the operation stability of percentage differential protection[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1410-1417. [20] 张兆云, 刘宏君, 岳蔚, 等. 采样值差动在线路差动保护中的应用[J]. 电力系统自动化, 2011, 35(12): 76-79. Zhang Zhaoyun, Liu Hongjun, Yue Wei, et al. Sampled values based differential protection for line differential protection[J]. Automation of Electric Power Systems, 2011, 35(12): 76-79. |
|
|
|