基于 $\Delta\Sigma$ 超频的高功率密度空间功率平台

苗狄1 张东来1 张乃通2

(1. 深圳航天科技创新研究院 D806 深圳 518057 2. 哈尔滨工业大学 哈尔滨 150001)

摘要 空间功率平台(PCU)多采用电流型跨导控制的 S4R 架构, 母线输出电容滤波阵一般 由低容值的自愈电容组成。针对功率平台基板面积、体积及重量的限制条件, 在满足与滞环跨导 控制相同的开关管损耗和母线稳态纹波指标情况下, 提出采用 ΔΣ 控制策略对局部开关进行超频 驱动,降低了自愈电容阵的容值且提升了高功率密度。从功率谱分析角度阐述了超频驱动减小电 容阵容值的机理,给出了驱动电路, 定量分析了超频范围, 建立了超频电源控制器数学模型, 给 出了控制参数设计办法。仿真及实验证实超频驱动的 S4R 的动态性及功率密度优于滞环驱动的 S4R。

关键词: S4R ΔΣ控制策略 超频 功率密度 建模 稳定性分析 中图分类号: TM391.9

Research on Space Power Conditioning Unit with High Power Density Based on $\Delta\Sigma$ Overclocking Characteristics

Miao Di¹ Zhang Donglai¹ Zhang Naitong²

(1.Shenzhen Academy of Aerospace Technology Shenzhen 518057 China 2. Harbin Institute of Technology Harbin 150001 China)

Abstract Sequential switch series shunt regulator(S4R) is used as space photovoltaic(PV) 20kW power conditioning unit(PCU). In order to improve high power density, a reasonable solution is reducing the filter healing capacitor array size and weight. Sigma-delta control strategy is proposed to gate the shunt switch by overclocking at the same efficiency with the hysteretic control. Modeling, loop design and system stable of sigma-delta control is analyzed in this paper. A better dynamic performance and power density ratio than the Bang-Bang control is proved by simulation and experiment.

Keywords: Sequential switch series shunt regulator(S4R), sigma-delta control strategy, overclocking, power density, modeling, stable

1 引言

针对空间太阳电池蓄电池联合供电平台, 普遍 采用有序开关分流器(Seguential Switch Shunt Regulator, S3R)或有序串联开关分流器

(Seguential Switch Series Shunt Regulator, S4R) 架构作为功率调节平台^[1,2]。下一代空间功率平台具 有平台模块化、高功率密度比、高冗余度及良好的

国家国际合作计划资助项目 (2010DFB63050)。

通用继承性等特点^[3]。S3R 与 S4R 属于能量直接传 递^[4,5]的功率调节技术,基于这两种架构的功率调节 器(Power Conditioning Unit, PCU)均采用双环跨导 控制策略^[6,7],电压外环负责针对不同载荷情况及外 部干扰进行电流内环 调阵一般采用欧法 公司具有自 愈特性的金属薄膜电容,过 电压时具有自动恢复绝 缘的特性。该电容□一般都是微法级^[12,13]。因此相 对于民用的电解电容,由该电容组成的 毫法级电容 阵,无论体积与重量都 相对滞环驱动的电容阵大。 图 1 给出了基于 S4R 的空间功率平台框图。

针对卫星功率平台高功率密度要求与元器件可 靠性要求,通过减少元器件数量以提高功率平台的

收稿日期 2012-09-20 发稿日期 2013-03-28

功率密度不具有可实施性,且元器件的数量、体积 与重量是减少功率密度的次要因素。研究过程中发 现由具有低容值自愈特性的 MKP 电容组成的母线 输出滤波阵列所占的体积较大,因此如何减少滤波 电容阵的容值是提高功率密度的主要矛盾。

图 1 空间功率平台 框图 Fig.1 The schematic of PCU based on S4R

无论采用 S3R 或 S4R 技术的 PCU 主要特点是 限频定幅调节技术,即LC³(limit cvcle conductance control)调节技术,其分流开关频率或 者电压环路的剪切频率与滤波电容成反比关系。因 此如何在相同损耗情况下提高分流的 最高开关频率 是本研究的重点。 $\Delta\Sigma$ (Sigma-Delta) ^[14-17]的控制 策略主要应用在 模-数转换(Analag to Digital Convertor, ADC)采样、数字 PWM 精度提高及开 关电源的 EMI 抑制上。ΔΣ 超频驱动是一种反馈调 制,通过增加调制器前馈通道增益及采样的开关频 率,对开关噪声进行整形,从而达到信号频谱内噪 声幅度抑制的目的。开关电压尖锋的减小可以有效 地减少输出滤波电容阵列大小,因此在相同纹波要 求下采用 $\Delta\Sigma$ 调制技术的 PCU 功率密度明显提高。

2 ΔΣ 超频驱动减少输出滤波电容的机理

2.1 分流域 ΔΣ 超频驱动母线纹波谱分析

量化噪声 *e* 是平稳的随机数列,与输入的控制 信号 *V*_e无关,并且服从均匀概率分布,见式(1)。

$$p(e) = \begin{cases} \frac{1}{\Delta V} & e \leq \frac{\Delta V}{2} \\ 0 & \mathbb{I} \end{cases}$$
(1)

式中, Δ*V* 是量化区间,即跨导模型中的上下之间 域值宽度。则量化噪声功率见式(2)。

$$p_{\rm e} = \frac{\Delta V^2}{12} \tag{2}$$

其 ΔΣ 驱动的采样频率为 f_s ,则量化后的功率 谱密度见式(3)。

$$p_{\rm e}(f) = \frac{p_{\rm e}}{f_{\rm s}} \tag{3}$$

过采样技术可以降低量化噪声的功率谱密度, 但是过高的采样时钟频率对于实际应用电路不是很 现实。采用噪声整形 ΔΣ 技术可以实现在母线带宽 范围内的降噪目的。图 2 给出了 2 阶噪声整形系统 框图;无噪声整形及二阶整形的开关分流器功率谱 密度图如图 2 所示, Bang-Bang 的开关频率为 1kHz, ΔΣ 的采样频率为 2kHz,通过 Saber 仿真软 件对分流调节器(Shunt Regulator, SR)电路进行 仿真,并把需要分析的信号数据转移到 Matlab 中, 对其进行 PSD 分析。二阶整形调制器包含两个积分 增益环节和一个比较环节,该比较环节即开关环节。 输入控制信号及反馈信号,做差形成误差信号,通 过负反馈调制器,该误差信号在稳态时趋近于零。 二阶的低频滤波器能滤除频带内的噪声;阶数的增 加能增强 $\Delta\Sigma$ 调制器的滤噪效果。二阶噪声整形控 制系统的 Z 域传递函数,见式(4)。二阶调制器 的噪声在基频下有两个零点,该处零点抑制了频带 内噪声,一般随着整形阶数增加,抑制效果更明显。 分析图 3 得出 $\Delta\Sigma$ 调制器的开关时刻高频分量相比 于 Bang-Bang 调制器更低,因此功率变换器的开关 噪声也得到了降低,即抑制了开关时刻的 MOSFET 两端的电压 Spike。

$$Y(n) = \frac{k_{\rm p}a_1a_2Z^{-2}X(n) + \left(1 - Z^{-1}\right)^2 N(n)}{1 + (k_{\rm p}b_2a_2 - 2)Z^{-1} + (k_{\rm p}b_1a_1a_2 - k_{\rm p}b_2a_2 + 1)Z^{-2}} \quad (4)$$

4)

图 2 二阶噪声整形控制框图 Fig.2 2-nd noise shaped control frame

图 3 ΔΣ 与 Bang-Bang 驱动的分流单元功率谱密度 Fig.3 Power spectrum density of ΔΣ and Bang-Bang driver in SR unit

ΔΣ调制器属于数据采样,当放置在电源反馈控制环路上时,电源可以看成一个低通滤波器

(Low-Pass Filter, LPF)。电源的 LPF 能有效的 抑制由调制器带来的高频噪声。分流稳态时的驱动

输出的方程见式(5)。

$$V_{\text{steady}}^{\text{driver}} = \begin{cases} 1 & nT \leq \mathcal{L} & (n+D)T \\ 0 & (n+D)T \leq \mathcal{L} & (n+1)T \end{cases}$$
(5)

对式(5)进行傅里叶分析与综合得到式(6)

$$F(V_{\text{steady}}^{\text{driver}}) = 2\pi \sin\left(\frac{fD}{f_s}\right) \sum_{k=-\infty}^{+\infty} \delta(2\pi f - 2kf_s\pi) e^{-j\left(\frac{fD}{f_s}\right)} \quad (6)$$

假设负载为纯阻性负载且为 1Ω,则稳态时分 流单元的功率谱密度 见式(7)。

$$V_{\text{switch}}^{\text{PSD}} = 4\pi^2 \sin^2 \left(\frac{fD}{f_{\text{s}}}\right) \sum_{k=-\infty}^{+\infty} \delta(2\pi f - 2kf_{\text{s}}\pi) \qquad (7)$$

采用二阶 ΔΣ 噪声整形调制技术,其引入的噪 声衰减因子 见式(8) 所示

$$|H_{\rm e}(f)| = \frac{A^2 \sin^2(\pi f)}{f_{\rm s}^2}$$
(8)

2.2 ΔΣ 驱动单元设计及线性模型

分流域的连续时间 二阶 1 位 ΔΣ 调制器实现电路图,如图 4 所示。该模拟电路实现 二阶噪声整形 调制,其中控制信号是补偿网络输出,即误差信号。 误差信号与限幅后的 数模转换(Digital to Analog Conreter, DAC)之差,经过两个积分环节、量化 比较器与 D 型触发器产生开关驱动信号。 N 位二 阶 ΔΣ 噪声整形量化区间 见式(9)。

当 V_{e} 超出量化误差范围,即 $|V_{c}| \ge V_{comp_n} \pm \Delta/2$ 时,量化器发生会发生过载现象,即驱动信号全部置高电平。

$$\Delta = \frac{V_{\text{comp_n_upper}} - V_{\text{comp_n_lower}}}{2^N - 1}$$
(9)

对于多模块并联的分流单元,要合理设计

 $V_{comp_n_upper}$ 和 $V_{comp_n_lower}$ 两个阈值电位既能满足调 用要求,同时这两个阈值电位差还决定了 $\Delta\Sigma$ 调制器的最高开关频率,这说明 $\Delta\Sigma$ 调制器在这里的应 用也属于限频跨导控制模式(LC³原则)。

DAC 反馈采样选择 不归零(NRZ) 编码,则
 2 阶连续时间的 ΔΣ 调制环路开环传递函数 见式(10)。

$$LF(s) = b\left(a_2 - \frac{a_1a_2}{2}\right)\frac{f_s}{s} + a_1a_2b\frac{f_s^2}{s^2}$$
(10)

式中 a₁及 a₂——反馈积分环节的增益; b——阈值电压衰减比例; f_s——反馈网络增益。

图 4 二阶 ΔΣ 驱动调制器电路 Fig.4 2-nd continuous-time noise shaped modulator 2.3 ΔΣ 驱动稳定性分析及阈值参数的确定

不同系数情况下的 Z 域二阶 ΔΣ 的根轨迹如图 5 所示。由式(4)可知当 $k_p=0$ 时, Z=(1, 0)为两个 起始极点。衰减因子 c与第二个积分器的增益 a_2 对根轨迹的形状没有改变,即 c与 a_2 的大小不会 影响调制器结构的稳定性,仅会影响满足稳定性的 k_p 大小。当 a_2 与 c 值越大,则满足稳定性的 k_p 越 小,反之亦然。

$$\beta = \begin{cases} 1 & D \le 0.5 \\ \frac{1-D}{D} & D > 0.5 \end{cases}$$
(12)

从而推论得出, ΔV_P 决定了 $k_{\text{peritical}}$ 大小, $\Delta V_P \in (1, 2)$, 调制器是稳定的。对于滞回驱动 $\Delta V_{\text{Bang-Bang}} \in (0, 1)$ 时调制器是稳定的。

2.4 相同损耗下 ΔΣ 与滞环驱动开关频率关系

图 6 给出了在相同母线纹波情况下 Bang-Bang 与 ΔΣ 调制器产生原理图。 其中 f_s 为 Bang-Bang 调制器频率, f_{s_avg} 是 ΔΣ 调制器在 Bang-Bang 调制周期内的平均开关频率。

在 ADC 及 DAC 等设计中,采样频率一般是根 据系统的信噪比(Signal to Noise Ratio, SNR), 动态范围(Dynamic Range, DR)及系统的 PSD 等各种指标来确定。图 7 给出了在相同拓扑, 控制器电压输出为 2.5V 情况下 Bang-Bang 调制与 ΔΣ 调制的驱动波形对比图。由图 6 可以得出采用 ΔΣ 调制的驱动波形在最高开关频率一样的情况下, 相同时间内的开关次数明显少于 Bang-Bang 调制器。 因此在最高开关频率相同时, ΔΣ 相比于 Bang-Bang 调制具有更低的开通关断损耗。 SR 模块稳态 工作情况下变换器的功率损耗主要由 MOSFET 及 二极管的开关损耗及导通损耗组成。

图 5 不同系数的二阶一位 $\Delta\Sigma$ 调制器根轨迹分析图 Fig.5 Root locus of 2 order single-bit $\Delta\Sigma$ with different

sets of scaling coefficients

当 $a_1 \in (1, \infty)$ 时,调制器不论增益 k_p 多大均处在 不稳定状态; 当 $a_1=1$, $a_2=1$ 时,调制器的增益 $k_p \in (0, 4)$ 时调制器处在临界稳定状态,当 $k_p \in (4, \infty)$ 时调制器工作不稳定。

当 $a_1 \in (0, 1)$ 时,调制器存在 $k_{\text{peritical}}$ 值,当 $k_p < k_{\text{peritical}}$ 时调制器处于稳定状态。当 $a_1=0.5$, $a_2=1$ 时, $k_{\text{peritical}}=2.66$ 。当 a_1 越小,则 $k_{\text{peritical}}$ 越大。

$$\alpha = \begin{cases} \frac{D}{1-D} & D \le 0.5 \\ 1 & D > 0.5 \end{cases}$$
(11)

其β见式(12)。

图 6 相同母线纹波下 Bang-Bang 与 $\Delta\Sigma$ 调制发波原理 Fig.6 Bang-Bang and $\Delta\Sigma$ modulator driver diagram

图 7 同一 Vc 情况的 Bang-Bang 调制与 $\Delta\Sigma$ 调制对比 Fig.7 Bang-Bang and $\Delta\Sigma$ modulator driver at same Vc

当损耗 P_{LOSS} 相等时,得出式(13),式中 k_0 称为超频常数; $f_s^{bang-bang}$ 是 Bang-Bang 驱动时的 开关频率; $f_s^{\Delta\Sigma}$ 是 $\Delta\Sigma$ 驱动时的最高开关频率。该等 式的物理解释是,当相同的 SR 模块在相同损耗, 即 $f_{s_avg}=f_s$ 采用 $\Delta\Sigma$ 驱动的最高开关频率等于 $f_s^{bang-bang}$ 的 k_0 倍。

$$f_{\rm s}^{\Delta\Sigma} = k_{\rm O} f_{\rm s}^{\rm Bang-Bang} \tag{13}$$

3 超频常数 ko 的计算分析

根据马尔科夫链的特性, $\alpha P(X_o) = \beta P(X_1)$, 其中 $P(X_o)$ 及 $P(X_1)$ 是发生 X_o 及 X_1 的概率; 调制驱动的占空比值 $D=I_{LOAD}/I_{PV}$;转移率 λ_{12} 及 $\lambda_{21} \leq 1$ 。推导得出,见式(14)。

$$\alpha = \frac{D}{1 - D}\beta \tag{14}$$

由式(11)、式(12)及式(14)可以得出如 式(15)所示的 k₀分段讨论公式。

$$\begin{cases} k_{\rm O} = \frac{\lambda_{ij}}{\lambda'_{ij}} < \frac{1}{\alpha D} = \frac{1-D}{D^2} & D \le 0.5 \\ k_{\rm O} = \frac{\lambda_{ij}}{\lambda'_{ij}} < \frac{1}{\beta(1-D)} = \frac{D}{(1-D)^2} & D \ge 0.5 \end{cases}$$
(15)

针对式(15)得出占空比变化情况下的超平常 数 k_0 选择范围。当 I_{LOAD} =0.5 I_{PV} 时, k_0 为2。这里 需要注意的是当D小于0.5时或大于0.5时,超频 倍率更高,如图8所示。但显然超频上限不肯能无 限的大,上限的选择需要其它的约束条件。 LC^3 控 制模式的特点是滤波电容的大小决定了开关频率的 大小。因此采用 $\Delta\Sigma$ 技术可以在相同变换器损耗情 况下及母线输出阻抗不变的条件下,减少PCU的 滤波电容阵列大小。采用 $\Delta\Sigma$ 驱动技术的PCU,不 但减小了母线输出滤波阵列的大小(一定意义上提 高

图 8 0%~100%占空比情况下超频常数选择范围 Fig.8 k₀ range under 0% to 100% D

了 PCU 的功率密度),同时也提高了功率调节单元 的动态特性,滤波电容越小其动态响应越快,但是 响应的超调也越大。 ΔΣ 调制方式的 SR 开关频率是 Bang-Bang 调制 k_0 倍,则可知 ΔΣ 调制下的 C_{BUS} 为 Bang-Bang 调制的 $1/k_0$ 倍,见式(16)。

$$C_{\rm BUS}^{\Delta\Sigma} = \frac{C_{\rm BUS}^{\rm Bang-Bang}}{k_{\rm O}} \tag{16}$$

4 含 $\Delta\Sigma$ 驱动环节的电压环路稳定性研究

ΔΣ 调制带来的主要是时间延迟。分析延迟主要包含三个部分:①运算放大器及比较器芯片本身的

延迟; ②由离散时间电路构成的 ΔΣ 调制器的采样 时间延迟,即不归零编码(Non-Return to Zero, NRZ)码元存在时间; ③纯积分滤波电路。三部分 中第一部分可以忽略不计;第二部分可以通过提高 采样频率,即提高过采样率来忽略由采样带来的延 迟;而第三部分其工作特性像 LPF 环节,这部份不 能通过其他方法忽略,而且正是这部分存在才使得 ΔΣ 实现了低通整形。将这部分看成一个纯延迟环节, 其传递函数为 $e^{-sT_{d}-sd}$,根据自控原理可知纯延迟环节 不会影响系统的增益曲线,但是会降低系统的相角 裕度。较大的延迟会减低系统的相角 裕度因此系统 的不稳定。由纯延迟环节带来的滞后 相角见式 (17),延迟时间见式(18)。则滞后的相角见式

(19),式中 f_{BUS} 是不含 $\Delta\Sigma$ 驱动环节时的控制环路带宽, f_e 是 $\Delta\Sigma$ 驱动环节的采样频率。

$$\varphi(\omega) = -\omega T_{d_{sd}} \tag{17}$$

$$T_{\rm d_sd} = \frac{k}{f_{\rm s}} \tag{18}$$

$$\varphi(\omega) = 360 f_{\rm BUS} \frac{k}{f_{\rm s}} \tag{19}$$

由式(19)可知:当 $f_{BUS}=200$ Hz,k=2时(低 通滤波阶数),若要满足 $\varphi(\theta) \leq 10$,则采样频率应 为 $f_s \geq 14.4$ kHz。

这里需要注意的是,无限制的提高采样频率用 以减少 ΔΣ 驱动的分流单元相角滞后不是解决问题 的唯一办法,还可以采用在反馈环节相角超前补偿 技术^[18]。图 9 给出了 ΔΣ 驱动环节 *f*_s=14.4kHz 时, 并采用相角补偿技术后的环路伯德图,图中的 相角 裕度约为 60°满足系统给定的指标。

5 实验验证与结果对比分析

为了验证 $\Delta\Sigma$ 驱动技术的可行性,设计了个分 流模块采用二阶 $\Delta\Sigma$ 调制和重叠调用技术,太阳电 池输入为开路电压 120V, 短路电流 6A, 母线输出 100V, 滤波电容阵列 550 μ F的 $\Delta\Sigma$ 驱动实验电路和 滤波电容阵列为 1 100µF 的 Bang-Bang 驱动实验电 路,每个模块的功率处理能力是 500W,由4个分 流模块组成,总功率是 2kW。由于输出滤波电容阵 列由 25µF/200V 的具有自愈特性的 MKP 电容组成, 每一个电容的体积大小是 2.5cm×3.5cm×1.5cm, 重 量是 50g。1.1mF 的母线滤波电容由 45 个这样的电 容组成,如果每个电容之间没有缝隙的放置则 1.1mF的电容阵产开面积是112.5cm×157.5cm,质 量是 2.25kg, 而 550µF 的电容阵则是 56cm×79cm,质量是 1.13kg。则针对母线输出滤波 电容阵列采用 $\Delta\Sigma$ 驱动技术的相比于 Bang-Bang 驱 动技术的功率密度提高到了 0.3W/cm3。图 10 给出 了原理实验样机的照片,图中标明了 550µF 与1 100µF的大小。

图 10 给出了基于 $\Delta\Sigma$ 驱动技术的 PCU 分流模 块负载电流为 3A 时的稳态母线电压纹波、驱动及 控制器输出波形。最大分流开关频率是 4kHz,最 低的开关频率为 1kHz,则基于 $\Delta\Sigma$ 驱动的分流开关 加权平均频率见式(20),其中 n_i 是开关频率 f_{s_i} 的个数。由图 11 可以得出其 $\Delta\Sigma$ 驱动加权平均 开关频率是 2.1kHz,图 12 给出了基于 Bang-Bang 驱动的负载电流 3A 时的稳态母线纹波及驱动。 图 12 可以得出其开关频率为 2.05kHz,这也验证了 当 D=50%,超频 $k_0=2$ 时,母线输出滤波电容减小 一半,而且其平均开关频率一致,母线纹波大小均为 500mV。域内测试波形,当负载电流由 4.5A 阶突 减至 0.5A 时的母线纹波即驱动信号。观察图 13 及 图 14 可知,域内负载阶跃变化时母线的电压过冲小 于 600mV,调整时间小于 800µs。

$$\alpha = \frac{D}{1 - D} \beta \bar{f}_{s} = \frac{\sum_{i=1}^{n} f_{s_{i}} n_{i}}{\sum_{i=1}^{n} n_{i}} = 2.1 \text{kHz}$$
(20)

图 9 f_s =14.4kHz 时有相角补偿的环路伯德图 Fig.9 Control loop with f_s =14.4kHz at phase lead network

图 10 $\Delta\Sigma$ 驱动与 Bang-Bang 驱动时的原理样机 Fig.10 Prototype of PCU with Bang-Bang and $\Delta\Sigma$ driver

- 图 11 负载电流 3A 稳态时 ΔΣ 驱动分流模块母线及驱动
- Fig.11 The steady state waves of waves of $V_{\rm BUS}$ and $V_{\rm GS}$ at $I_{\rm LOAD}$ =3A with $\Delta\Sigma$ driver

- 图 12 负载电流 3A 稳态时 Bang-Bang 驱动分流域 母线纹波及驱动信号
- Fig.12 The steady state waves of waves of V_{BUS} and V_{GS} at $I_{LOAD}=3A$ with Bang-Bang driver

- 图 13 基于 ΔΣ 驱动负载电流动态时由 0.5A 突增至 4.5A 驱动分流模块母线及驱动
 Fig.13 V_{BUS} inner domain response I_{LOAD} steps up from
 - 0.5A to 4.5A base on $\Delta\Sigma$ driver

- 图 14 基于 ΔΣ 驱动负载电流动态时由 4.5A 突减至 0.5A 驱动分流模块母线及驱动
- Fig.14 $V_{\rm BUS}$ inner domain response $I_{\rm LOAD}$ steps down from 4.5A to 0.5A on $\Delta\Sigma$ driver

基于 ΔΣ 驱动域内动态测量测试波形如图 15 及 图 16 所示,负载变化的摆率是 1 000A/μs。图 15 给 出了 SR 域间测试波形,当负载电流有 0.5A 阶跃至 9.5A 时的母线纹波即驱动信号;图 16 给出了 SR 域 间测试波形,当负载电流由 9.5A 阶突减至 0.5A 时 的

图 15 基于 ΔΣ 驱动负载电流动态时由 0.5A 突增至
 9.5A 驱动分流模块母线及驱动

Fig.15 V_{BUS} inner domain response I_{LOAD} steps up from

0.5A to 9.5A on $\Delta\Sigma$ driver

- 图 16 基于 ΔΣ 驱动负载电流动态时由 9.5A 突减至
 0.5A 驱动分流模块母线及驱动
- Fig.16 $V_{\rm BUS}$ inter domain response $I_{\rm LOAD}$ steps down from 9.5A to 0.5A on $\Delta\Sigma$ driver

母线纹波即驱动信号。观察图 15 及图 16 可知,域间负载阶跃变化时母线的电压过冲小于 1.2V,调整时间小于 5ms。

6 结论

针对在满足给定的母线稳态纹波指标及开关损 耗情况下,如何减少母线滤波阵列的容量,提出 二 阶 ΔΣ 调制驱动技术应用于分流域中。并量化分析 了二阶 ΔΣ 调制驱动的稳定条件,并采用马尔科夫 过程分析理论进行了超频 k_o的选择研究。在完成稳 定条件确定的基础上,把 ΔΣ 调制驱动看成纯延迟 环节带入到 MEA 控制环路中,进行了相对稳定性 分析,给出了采样频率确定方法。理论分析及仿真、 实验验证得出以下结论:

(1) 基于 $\Delta\Sigma$ 驱动的 S4R 架构 PCU 稳态测试 表明,在平均开关频率一样,即分流开关管损耗一 样的情况下,母线纹波均保持在 \pm 500mV 以内。其 采用 $\Delta\Sigma$ 调制驱动的母线滤波电容是 Bang-Bang 调 制的 0.5 倍。

(2)域内与域间的动态测试表明,采用ΔΣ调制驱动的不论是母线电压过冲还是调整时间均小于 Bang-Bang 调制驱动的技术。

(3) $\Delta \Sigma$ 调制驱动对 MEA 环路带来的相角滞 后影响可以通过提高 $\Delta \Sigma$ 调制的采样频率 f_s 来解决, 也可以辅以反馈环节的相角超前校正来满足给定的 相角裕度指标。

参考文献

- [1] Maset E, Sanchis Kilders E, Ejea J B, et al. New high power/high voltage battery-free bus for electrical propulsion in satellites[C]. IEEE Applied Power Electronics Conference, 2007: 1299-1305.
- [2] Bruno ghislain liegeois. Switch shunt regulator and power supply arrangement using same for spacecraft applications[P]. United States Patent, Part No. US6979986B2.
- [3] Capel A, Perol P.Comparative performance evaluation between the S4R and the S3R regulated bus topologies[C]. IEEE Power Electronics Specialists Conference, 2001: 1963-1969.
- O'Sullivan A Capel, Marpinard J C. High power conditioning for space applications[C]. IEEE Proceedings on Power Electronics Specialists on Power Electronics Specialists, 1988(76): 201-210.
- [5] Dehbonei H, Lee S R, Ko S H. Direct energy transfer for high efficiency photovoltaic energy systems part i: concepts and hypothesis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 31-45.
- [6] Dehbonei H, Lee S R, Ko S H. Direct energy transfer for high efficiency photovoltaic energy systems part II: experimental evaluations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 46-57.
- [7] Blanes J M, Garrigos A, Carrasco J A, et al. Maximum power point estimator for photovoltaic solar arrays[C]. IEEE Mediterranean, Electronic Technical Conference, 2006: 889-892.
- [8] Maset E, Ejea J B, Fereeres A. New high power high voltage battery free bus for electrical propulsion in satellites[J]. IEEE Transactions on Aerospace and System Electronic, 2007(5): 1456-1470.
- [9] 苗狄, 张东来. 航天器供电系统 S4MPR 应用仿真研究[J]. 系统仿真学报, 2009(19): 95-104.
 Miao Di, Zhang Donglai.Simulation analysis of S4MPR and its application[J]. Journal of System Simulation, 2009(19): 95-104.
- [10] Garrigos A, Carrasco J A, Blanes J M, et al.Modeling the sequential switching shunt series regulator[J].
 IEEE Power Electronics Letters, 2005(3): 7-13.
- [11] Garrigos A, Rubiato J, Carrasco J A, et al. System model of the sequential switching shunt series regulator for spacecraft regulated high power busses[C]. IEEE Power Electronics Specialists Conference, 2004:

2645-2650.

- [12] Garrigos A, Blanes J M, Carrasco J A, et al. A power conditioning unit for high power GEO satellites based on the sequential switching shunt series regulator[C]. IEEE Electrotechnical Conference, 2006: 1186-1189.
- [13] 李国欣.航天器电源系统技术论述 [M]. 北京: 宇航 出版社, 2008.
- [14] Stewart R, Pfann E. Oversampling and sigma delta strategies for data conversion[J]. Electronic and Communication Engineering Journal, 1998 (4): 37-47.
- [15] Pieter Rom, Ludo weyten.Design of doublesampleing ΔΣ modulation A/D converters with bilinear integrators[J], IEEE Transactions on Circuits AND Systems I: Regular Paper, 2005, 52: 715-721.
- [16] Steven K, Terri S. A noise shaped switching power supply using a sigma delta modulator[J]. IEEE Transactions on Circuits and Systems, 2004, 51: 1051-1061.
- [17] Paramesh J, Von Joy A.Use sigma delta modulation to control EMI form switch mode power supplies[J].
 IEEE Transactions on Industrial Eletronics, 2001, 48(1): 101-111.
- [18] 苗狄,张东来.独立光伏电源控制器建模及高动态 性能研究[J].电工技术学报,2011,26(7):75-82.
 Miao Di, Zhang Donglai. Modeling of stand-alone PV power controller and high dynamic performance research [J]. Transactions of China Electrotechnical Society, 2011, 26(7): 75-82.

作者简介 : 苗 狄 男, 1980年生,博士,主要从事新能源电力 电子技术的研究。张乃通 男, 1934年生,教授,博士生导师, 研究方向为通信与信息工程。