Abstract:In order to avoid the defect that a conventional particle swarm optimization (PSO) algorithm is easy to trap into a local optimization, a new fuzzy adaptive-simulated annealing PSO algorithm is proposed in this paper. Based on the principle of fuzzy logic, the inputs to the fuzzy controller are the normalized current best performance valuation, inertia weighing of the PSO algorithm and the learning factor, the outputs of the controller are the parameters rate of change. The fuzzy rules are formulated based on the experience of parameters settings so as to adjust the PSO parameters adaptively. The quality of particles’ new location after the adjustment is valued by simulated annealing (SA). Then, the modified PSO algorithm is introduced to solve multi-objective reactive power optimization problem. IEEE 30-bus and IEEE118-bus system are simulated to verify the effectiveness and feasibility of SA- fuzzy self-adaptive particle swarm optimization algorithm.
[1] 刘佳, 李丹, 高立群, 等. 多目标无功优化的向量评价自适应粒子群算法[J]. 中国电机工程学报, 2008, 28(31): 22-28. [2] Kenndy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neutral Networks, Perth, Australia, 1995, 4: 1942-1948. [3] 吴启迪, 汪镭. 智能微粒群算法研究及应用[M]. 南京: 江苏教育出版社, 2005. [4] 韩江洪, 李正荣, 魏振春. 一种自适应粒子群优化算法及其仿真研究[J]. 系统仿真学报, 2006, 18(10): 2969-2971. [5] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 2001: 101-106. [6] Zhang Wen, Liu Yutian. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J]. Electrical Power and Energy Systems, 2008, 4(5): 1-8. [7] 张文. 基于粒子群优化算法的电力系统无功优化研究[D]. 济南: 山东大学, 2006. [8] 黄洪钟. 多目标模糊优化设计的基本理论与方法(四)[J]. 机械设计, 1997(4): 39-43. [9] Ratnaweera, Halgamuge S K, Waston H C. Self- organization hierarchical particle swarm optimization with time-varying acceleration coefficients[C]. Proceedings of the IEEE International Conference on Evolutionary Computation, 2004: 240-255. [10] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[C]. Information Processing Letters, 2003, 85(6): 317-325. [11] 高尚, 杨静宇. 群智能算法及其应用[M]. 北京: 中国水利水电出版社, 2006. [12] Varadarajan M, Swarup K S. Differential evolution approach for optimal reactive power dispatch[J]. Applied Soft Computing, 2007, 12(2): 1-13.