Abstract:In order to overcome the disadvantages that traditional energy-supplying method brings to the cardiac pacemaker, this paper investigates the transcutaneous energy transmission system (TETS) based on wireless. After presented its appropriate working frequency with computer simulation, we put forward the mathematical model of the core of the system (the transcutaneous transformer), and validated it with experiments. Capacitor compensation has been used in the secondary circuit of the system to meet the voltage needs of the charging chip of the pacemaker. To justify the feasibility of the system, charging experiments with pig-skin (simulating the human’s magnetic parameters are carried out) and the charging curve is obtained successfully.
周煜, 于歆杰, 程锦闽, 王崇慧, 王琳. 用于心脏起搏器的经皮能量传输系统[J]. 电工技术学报, 2010, 25(3): 48-53.
Zhou Yu, Yu Xinjie, Cheng Jinmin, Wang Chonghui, Wang Lin. Transcutaneous Energy Transmission System for Cardiac Pacemaker. Transactions of China Electrotechnical Society, 2010, 25(3): 48-53.
[1] Robert E Fischell. The invention to the rechargeable cardiac pacemaker vignette[J]. IEEE Engineering in Medicine and Biology, 1990, 9(2): 77-78. [2] Dr Orhan Soykan. Power sources for implantable medical devices[J]. Devices Technology & Appli- cations Electronics, 2002(6): 76-79. [3] Hideaki Abe, Hiroshi Sakamoto, Koosuke Harada. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil[J]. IEEE Transactions on Industry, 2000, 36(2): 444- 451. [4] Richard P Phillips. A transcutaneous energy transport system with voltage input for power control[J]. Cardiovascular Mechanics, 1991, 13(5):2131-2132. [5] David B Geselowitz, Quynh T N Hoang, Roger P Gaumond. The effects of metals on transcutaneous energy transmission system[J]. IEEE Transactions on Biomedical Engineering, 1992, 39(9): 928-934. [6] Puers R, Vandevoorde G. Recent progress on transcutaneous energy transfer for total artificial heart systems[J]. Artificial Organs, 2001, 25(5): 400-405. [7] Matsuki H, Shiiki M. Investigations of coil geometry for transcutaneous for artificial heart[J]. IEEE Transactions on Magnetics, 1992, 28(5): 2406-2408. [8] Matsuki H. Transcutaneous DC-DC converter for totally implantable artificial heart using synchronous rectifier[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5118-5120. [9] Hidekazu Miura, Shinsuke Arai, Fumihiro Sato, et al. A synchronous rectification using a digital PLL technique for contactless power supplies[J]. IEEE Transactions on Magnetics, 2005, 41(10): 3997-3999. [10] Hidekazu Miura, Shinsuke Arai, Yasuyuki Kakubari, et al. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3578-3580. [11] 樊华, 郑小林, 皮喜田, 等. 一种用于体内诊疗装置的无线能量传输方案[J]. 北京生物医学工程, 2004, 23(3): 168-170. [12] 曹玉珍, 武文君, 范增飞. 植入式电子装置经皮感应充电方案[J]. 电子测量技术, 2006, 29(4): 19-20, 32. [13] 陈海燕, 高晓琳, 杨庆新, 等. 用于人工心中的经皮传能系统耦合特性及补偿研究[J]. 电工电能新技术, 2008, 27(2): 59-62. [14] 陶发. 植入式生物遥测装置无线电能传输系统研 究[D]. 南京:南京航空航天大学, 2005. [15] ACGIH[S]. Radiation Standard of America, 1984. [16] 电磁辐射防护规定[S]. 国家环境保护局, 1988. [17] 田民波. 磁性材料[M]. 北京:清华大学出版社, 2001. [18] 于歆杰, 朱桂萍, 陆文娟. 电路原理[M]. 北京:清华大学出版社, 2007.