Abstract:A fast contingency screening and ranking method for voltage stability security assessment is proposed. The proposed method could trace from the pre-contingency critical point, using optimal multiplier power flow method to obtain the stability boundary point, the post-contingency critical point is estimated from it. The estimate precision is guaranteed by only one iteration step if the start point is close to the critical point, then the non-critical contingencies are quickly identified. To guarantee the computation precision of severe contingencies and some special case contingencies, this paper analyzes them in detail and solving method are also proposed. Numerical simulations on a practical China 703 bus system show that the proposed method is effective.
张勇军, 蔡广林, 邱文锋. 基于最优乘子潮流估计的故障筛选与排序[J]. 电工技术学报, 2010, 25(1): 123-129.
Zhang Yongjun, Cai Guanglin, Qiu Wenfeng. Contingency Screening and Ranking Based on Optimal Multiplier Power Flow Evaluation. Transactions of China Electrotechnical Society, 2010, 25(1): 123-129.
[1] 徐泰山, 许剑冰, 鲍颜红, 等. 互联电网预防控制和紧急控制在线预决策系统[J]. 电力系统自动化, 2006, 30(7): 1-5. [2] 江伟, 王成山, 余贻鑫, 等. 直接计算静态电压稳定临界点的新方法[J]. 中国电机工程学报, 2006, 26(10): 1-6. [3] 韦化, 丁晓莺. 基于现代内点理论的电压稳定临界点算法[J]. 中国电机工程学报, 2002, 22(3): 27-31. [4] 马冠雄, 刘明波, 王奇. 一种识别静态电压稳定分岔点的混合方法[J]. 电力系统自动化, 2006, 30(24): 17-20. [5] 江伟, 王成山, 余贻鑫, 等. 考虑支路故障情况下的静态电压稳定分析[J]. 中国电机工程学报, 2006, 26(13): 20-25. [6] 胡泽春, 王锡凡. 基于最优乘子潮流确定静态电压稳定临界点[J]. 电力系统自动化, 2006, 30(6): 6-11. [7] Vaahedi E, Fuchs C, Xu W, et al. Voltage stability contingency screening and ranking[J]. IEEE Trans. on Power Systems, 1999, 14(1): 256-265. [8] Canizares C A, De Souza A C Z, Quintana V H. Comparison of performance indices for detection of proximity to voltage collapse[J]. IEEE Trans. on Power Systems, 1996, 11(3): 1441-1447. [9] Liu H, Bose A, Venkatasubramaniam V. A fast voltage security assessment method using adaptive bounding[J]. IEEE Trans. on Power Systems, 2000, 15(3): 1137-1141. [10] Greene S, Dobson I, Alvarado F L. Contingency analysis for voltage collapse via sensitivities from a single nose curve[J]. IEEE Trans. on Power Systems, 1999, 14(1): 232-240. [11] Amjady N, Esmaili M. Application of a new sensitivity analysis framework for voltage contingency ranking[J]. IEEE Trans. on Power Systems, 2005, 20(2): 973-983. [12] Yorino N, Li H Q, Haeada S, et al. A method of voltage stability evaluation for branch and generator outage contingencies[J]. IEEE Trans. on Power Systems, 2004, 19(1): 252-259. [13] 邱晓燕, 李兴源, 林伟. 在线电压稳定性评估中事故筛选和排序方法的研究[J]. 中国电机工程学报, 2004, 24(9): 50-55. [14] 赵晋泉, 江晓东, 张伯明. 一种用于电力系统静态稳定性分析的故障筛选与排序方法[J]. 电网技术, 2005, 29(20): 62-67. [15] 马平, 蔡兴国. 电压稳定分析中支路型故障筛选及排序算法研究[J]. 中国电机工程学报, 2007, 27(1): 44-48. [16] 陈得治, 张伯明, 吴文传, 等. 静态电压稳定分析的故障筛选和排序方法[J]. 电力系统自动化, 2008, 32(14): 16-20. [17] Zarate L A L, Castro C A. Fast computation of security margins to voltage collapse based on sensitivity analysis[J]. IEE Proc-Gener. Transm. Distrib., 2006, 153(1): 35-43. [18] Fluck A J, Gonella R, Dondeti J R. A new power sensitivity method of ranking branch outage contingencies for voltage collapse[J]. IEEE Trans. on Power Systems, 2002, 17(2): 265-270. [19] Feng Z, Xu W. Fast computation of post-contingency system margins for voltage stability assessments of large-scale power systems[J]. IEE Proc-Gener. Transm. Distrib., 2000, 147(2): 76-80. [20] Overbye T J. A power flow measure for unsolvable cases[J]. IEEE Trans. on Power Systems, 1994, 9(2): 1359-1365. [21] 王成山, 王兴刚. 考虑静态电压稳定约束的概率 TTC 快速计算(一)负荷、发电机出力不确定性因素的计及[J]. 中国电机工程学报, 2006, 26(16): 46-51.