Abstract:The non-equilibrium plasma technology is a key technology of the modern industry, and also an important high-tech development direction in near future. The microscopic mechanism underlying in such plasma, and its relationship to the macroscopic properties, need to be further unraveled. That is of great significance for improving the level of scientific understanding and to promote industrial development. Until now, much simulation research has focused on the low-pressure non-equilibrium plasma, but little for its atmospheric or even higher pressure counterparts. The numerical models of high-pressure non-equilibrium plasmas are reviewed in this paper. Non-equilibrium plasma normally has two states: local chemical equilibrium (LCE) state and non local chemical equilibrium (NLCE) state. The particle components in the former one can be obtained by using macroscopic thermodynamic statistical theory, but the latter one is more complicated, for the characteristic times of transport processes are comparable or less than the equilibration times of chemical reactions. Two-temperature models for the simulation of particle components and spatio-temporal resolved physical properties are discussed for non-equilibrium LCE-state plasmas, with emphasis on the methods based on mass action law, Gibbs free energy enthalpy principle and chemical kinetics. On the other hand, fluid model based on drift-diffusion equations and kinetic model are discussed for non-equilibrium NLCE-state plasmas, and a new simulation method by the combination of global model and fluid model is put forward.
荣命哲, 刘定新, 李, 美, 王伟宗. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282.
Rong Mingzhe,Liu Dingxin,Li Mei,Wang Weizong. Research Status and New Progress on the Numerical Simulation of Non-Equilibrium Plasmas. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282.
[1] 刘万东. 等离子体物理导论[M]. 合肥: 中国科学技术大学出版社, 2002. [2] Boulos M I, Fauchais P, Pfender E. Thermal plasmas-fundamental and applications[M]. New York: Plenum Press, 1994. [3] Freton P, Gonzalez J J, Gleizes A. Comparison between a two- and a three-dimensional arc plasma configuration[J]. Journal of Physics D: Applied Physics, 2010, 43(19): 2442-2452. [4] Trelles J P, Pfender E, Heberlein J V R. Modelling of the arc reattachment process in plasma torches[J]. Journal of Physics D: Applied Physics, 2007, 40(18): 5635-5648. [5] Bernardi D, Colombo V, Ghedini E, et al. 3-D turbulent modelling of an ICPT with detailed gas injection section[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 426-427. [6] Murphy A B. Thermal plasmas in gas mixtures[J]. Journal of Physics D: Applied Physics, 2001, 34(20): 151-157. [7] Plasma science: Advancing knowledge in the national interest.[P/OL].http://sites.nationalacademies.org/DEPS/ DEPS_037579. [8] Samukawa S, Hori M, Rauf S, et al. The 2012 plasma roadmap[J]. Journal of Physics D: Applied Physics, 2012, 45(25): 434-441. [9] Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 1367-2360. [10] Murphy A B. Electron heating in the measurement of electron temperature by Thomson scattering: Are thermal plasmas thermal [J]. Physical Review Letters, 2002, 89(4): 1-4. [11] Gregori G, Kortshagen U, Heberlein J, et al. Analysis of Thomson scattering results from an arc plasma jet[J]. Physical Review E, 2002, 65(046411): 1-8. [12] Dzierzega K, Zawadzki W, Pokrzywka B, et al. Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics[J]. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 2006, 74(2): 30-45. [13] NIST chemical kinetics database[DB]. http://kinetics. nist. gov/kinetics/index.jsp. [14] Millar T J, Farquhar P R A, Willacy K. The UMIST database for astrochemistry 1995[J]. Astronomy and Astrophysics Supplement Series, 1997, 121: 139-185. [15] Rat V, Murphy A B, Aubreton J, et al. Treatment of non-equilibrium phenomena in thermal plasma flows[J]. Journal of Physics D: Applied Physics, 2008, 41(3): 183-190. [16] Yan J D, Fang M T C, Liu Q S. Dielectric breakdown of a residual SF 6 plasma at 3000K under diatomic equilibrium [J]. IEEE Transactions on Plasma Science, 1997, 4(1): 114-119. [17] Fauchais P, BoulosI M I, Pfender E. Thermal plasmas fundamentals and applications[M]. New York: Plenum, 1994. [18] 高尚惠, 孙煜. 热力学与统计物理学[M]. 北京: 高等教育出版社, 1980. [19] André P, Abbaoui M, Lefort A, et al. Numerical method and composition in multi-temperature plasmas: application to an Ar-H 2 mixture[J]. Plasma Chemistry and Plasma Processing, 1996, 16(3): 379-381. [20] André P. Partition functions and concentrations in plasmas out of thermal equilibrium[J]. IEEE Transactions on Plasma Science, 1995, 23(3): 453-457. [21] Coufal O. Composition and thermodynamic properties of thermal plasma up to 50kK[J]. Journal of Physics D: Applied Physics, 2007, 40(11): 3371-3385. [22] 王伟宗, 荣命哲, 吴翊, 等. 平衡态与非平衡态等离子体物性参数计算模型研究[J]. 高压电器, 2010, 46(7): 41-45.[22] Wang Weizong, Rong Mingzhe, Wu Yi, et al. Studies on properties calculation models of equilibrium and non-equilibrium plasma[J]. High Voltage Apparatus, 2010, 46(7): 41-45. [23] Gleizes A, Chervy, Gonzale J J. Calculation of a two-temperature plasma composition: bases and application to SF 6 [J]. Journal of Physics D: Applied Physics,1999, 32(16): 2060-2067. [24] Wang W Z, Rong M Z, Yan J D. The reactive thermal conductivity of thermal equilibrium and non equilibrium plasmas application to nitrogen [J]. IEEE Transactions on Plasma Science, 2012, 40(4): 980-990. [25] Wang W Z, Rong M Z, Yan J D. Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions [J]. Physics of Plasmas, 2011, 18(10): 2-19. [26] Ghorui S, Heberlein J V R, Pfender E. Thermodynamic and transport properties of two temperature nitrogen-oxygen plasma[J]. Plasma Chemistry and Plasma Processing, 2008, 7(28): 553-582. [27] Ramshaw J D. Simple approximation for thermal diffusion in gas mixtures[J]. Journal of Non- equilibrium Thermodynamics, 1996, 21(3): 233-238. [28] Tanaka Y, Yokomizu Y, Ishikawa M, et al. Particle composition of high-pressure SF 6 plasma with electron temperature greater than gas temperature [J]. IEEE Transactions on Plasma Science, 1997, 25(5): 991-995. [29] Chervy B, Gleizes A, Razafinimanana M. Thermodynamic properties and transport coefficients in SF 6 -Cu mixtures at temperatures of 300~3 0000 K and pressures of 0.1~1 MPa[J]. Journal of Physics D: Applied Physics, 1994, 27(6): 1193-1206. [30] 臧春艳, 何俊佳, 程礼椿. 平衡态和非平衡态等离子体的微观模型研究[J]. 高压电器, 2005, 41(6): 416-419.[30] Zang Chunyan, He Junjia, Cheng Lichun. Study on microcosmic models of equilibrium and non- equilibrium plasma[J]. High Voltage Apparatus, 2005, 41(6): 416-419. [31] Coufal O. Composition and thermodynamic properties of thermal plasma up to 50kK[J]. Journal of Physics D: Applied Physics, 2007, 40 (13): 3371-3385. [32] Tanaka Yasunori, Michishita T, Uesugi Y. Hydrodynamic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure[J]. Plasma Sources Science and Technology, 2005, 14(5): 134-151. [33] Fauchais P, Boulos M I, Pfender E. Thermal plasmas-fundamentals and applications[M]. New York: Plenum Press, 1994. [34] Chen D M, Hsu K C, Pfender E. Two-temperature modeling of an arc plasma reactor[J]. Plasma Chemistry and Plasma Processing, 1981, 4(3): 295-314. [35] Li H P, Heberlein J, Pfender E. Three-dimensional, nonequilibrium effects in a high-intensity blown arc[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 402-405. [36] Dinulescu H A, Pfender E. Analysis of the anode boundary layer of high intensity arcs[J]. Journal of Physics D: Applied Physics, 1980, 51(6): 3149-3157. [37] Morrow R, Lowke J J. A one dimensional theory for the electric sheaths of electric arcs[J]. Journal of Physics D: Applied Physics, 1993, 26(3): 634-642. [38] Amakawa T, Jenista J, Heberlein J, et al. Anode-boundary-layer behaviour in a transferred high-intensity arc[J]. Journal of Physics D: Applied Physics, 1998, 31(20): 2826-2834. [39] Tanaka M, Ushio M. Observations of the anode boundary layer in free-burning argon arcs[J]. Journal of Physics D: Applied Physics, 1999, 32(8): 906-912. [40] Benilov M S. Analysis of ionization non-equilibrium in the near-cathode region of atmospheric-pressure arcs[J]. Journal of Physics D: Applied Physics, 1999, 32(3): 257-262. [41] Yang G, Heberlein J. Anode attachment modes and their formation in a high intensity argon arc [J]. Plasma Sources Science and Technology, 2007, 16(3): 529-542. [42] Yang G, Heberlein J. The anode region of high intensity arcs with cold cross flow [J]. Journal of Physics D: Applied Physics, 2007, 40(18): 5649- 5662. [43] Colombo V, Ghedini E, M Boselli, et al. 3D static and time-dependent modelling of a dc transferred arc twin torch system[J]. Journal of Physics D: Applied Physics, 2011, 44(9): 194-199. [44] Trelles J P, Heberlein J V R, Pfender E. Non-equilibrium modelling of arc plasma torches[J]. Journal of Physics D: Applied Physics, 2007, 40(6): 5937-5952. [45] Adamec L, Coufal O. On kinetics of reactions in HV circuit breakers after current zero[J]. Journal of Physics D: Applied Physics, 1999, 32(6): 1702-1710. [46] Girard R, Belhaouari J B, Gonzalez J J, et al. A two-temperature kinetic model of SF 6 plasma[J]. Journal of Physics D: Applied Physics, 1999, 32(5): 2890-2901. [47] Gleizes A, Mbolidi F, Habibt A A M. Kinetic model of a decaying SF 6 plasma over the temperature range 12000 K to 3000 K[J]. Plasma Sources Science and Technology, 1993, 2 (10): 173-179. [48] Richley E, Tuma D T. On the determination of particle concentrations in multi-temperature plasmas[J]. Journal of Physics D: Applied Physics, 1982, 53(12): 8537-8542. [49] Teulet P H, Cressault Y, Hingana H, et al. Calculation of two-temperature thermodynamic and transport properties for argon, oxygen, nitrogen and air plasmas at atmospheric pressure[C]. International Symposium on Plasma Chemistry, 2011. [50] Hossain M M, Tanaka Y, Sakuta T. Particle concentrations and transport properties of a partially ionized Ar plasma in a two-temperature reaction kinetic approach[J]. Journal of Physics D: Applied Physics, 2002, 35(7): 529-535. [51] Phelps A V, Van Brunt R. Electron-transport, ionization, attachment and dissociation coefficients in SF 6 and its mixtures[J]. Journal of Physics D: Applied Physics, 1988, 64(9): 4269-4277. [52] Atsushi Komuro, Ryo Ono, Tetsuji Oda. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge[J]. Plasma Sources Science and Technology, 2010, 19(5): 055004. [53] Liu D X, Yang A J, Wang X H, et al. Wall fluxes of reactive oxygen species of an rf atmospheric-pressure plasma and their dependence on sheath dynamics[J]. Journal of Physics D: Applied Physics, 2012, 45(30): 305205. [54] Mckay K, Liu D X, Rong M Z, et al. Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He+O 2 +H 2 O plasmas[J]. Journal of Physics D: Applied Physics, 2012, 45(17): 172001. [55] Yang A J, Wang X H, Rong M Z, et al. 1-D fluid model of atmospheric-pressure rf He+O 2 cold plasmas: Parametric study and critical evaluation[J]. Journal of Physics D: Applied Physics, 2011, 18(11): 113503. [56] McKay K, Liu D X, Iza F, et al. Double-layer structures in low-temperature atmospheric-pressure electronegative RF microplasmas: separation of electrons and anions[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2138-2139. [57] Liu D X, Bruggeman P, Iza F, et al. Global model of low-temperature atmospheric-pressure He+H 2 O plasmas[J]. Plasma Sources Science and Technology, 2010, 19(2): 025018. [58] Liu D X, Rong M Z, Wang X H, et al. Main species and physicochemical processes in cold atmospheric pressure He+O 2 plasmas[J]. Plasma Processes and Polymers, 2010, 7(9): 846-865. [59] Liu D X, Iza F, Wang X H, et al. He+O 2 +H 2 O plasmas as a source of reactive oxygen species[J]. Applied Physics Letters, 2011, 98(22): 221501. [60] Kim H C, Iza F, Yang S S, et al. Paricle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects[J]. Journal of Physics D: Applied Physics. 2005, 38(10): 283-301. [61] Iza F, Lee J K, Kong M G. Electron Kinetics in radio-frequency atmospheric-pressure microplasmas [J]. Physical Review Letters, 2007, 99(7): 075004. [62] Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(5): 207-220. [63] Park G, Lee H, Kim G, et al. Global model of He/O 2 and Ar/O 2 atmospheric pressure glow discharges[J]. Plasma Processes and Polymers, 2008, 5(3): 569-576. [64] Rauf S, Kushner M J. Dynamics of a coplanar- electrode plasma display panel cell[J]. Journal of Physics D: Applied Physics, 1999, 85(14): 3460- 3469. [65] Sakiyama Y, Graves D B, Stoffels E. Influence of electrical properties of treated surface on RF-excited plasma needle at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41(9): 095204. [66] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(7): 722-733. [67] Kang W S, Kim H S, Hong S H. Gas temperature effect on discharge-mode characteristics of atmospheric- pressure dielectric barrier discharge in a helium-oxygen mixture[J]. IEEE Transactions on Plasma Science, 2010, 38(8): 1982-1990. [68] Shi J J, Kong M G. Mechanisms of the α and γ modes in radio-frequency atmospheric glow discharges [J]. Journal of Physics D: Applied Physics, 2005, 97(2): 023306. [69] Martens T, Bogaerts A, Brok W, et al. Computer simulations of a dielectric barrier discharge used for analytical spectrometry[J]. Analytical and Bioanalytical Chemistry, 2007, 388(45): 1583-1594. [70] Balcon N, Hagelaar G J M, Boeuf J P. Numerical model of an argon atmospheric pressure RF discharge[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2782-2787. [71] 张增辉, 邵先军, 张冠军. 大气压氩气介质阻挡辉光放电的一维仿真研究[J]. 物理学报, 2012, 61(4): 452-464.[71] Zhang Zenghui, Shao Xianjun, Zhang Guanjun. One-dimensional simulation of argon dielectric barrier glow discharge at atmospheric pressure[J]. Journal of Physics, 2012, 61(4): 452-464. [72] 张远涛. 大气压介质阻挡放电时空演化行为理论研究[D]. 大连: 大连理工大学, 2006. [73] Sakiyama Y, Graves D B. Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure[J]. Plasma Sources Science and Technology, 2009, 18(5): 342-347. [74] Al-Mamun S A, Tanaka Y, Uesugi Y. Two- temperature two-dimensional non chemical modeling of Ar-CO 2 -H 2 induction thermal plasmas at atmospheric pressure[J]. Plasma Chem. Plasma Process, 2010, 30(4): 141-172. [75] Trelles J P, Heberlein J V R, Pfender E. Non- equilibrium modelling of arc plasma torches[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 5937-5952. [76] Gordillo-V´azquez F J. Air plasma kinetics under the influence of sprites[J]. Journal of Physics D: Applied Physics, 2008, 41(23): 3-32. [77] Baulch D L, Cox R A, Hampson R F. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II[J]. Journal of Physical and Chemical Reference Data, 1984, 13(4): 1259-1378. [78] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. 2nd ed. NewYork: Wiley, 2005. [79] Monahan D D, Turner M M. Global models of electronegative discharges: critical evaluation and practical recommendations[J]. Plasma Sources Science and Technology, 2008, 17(3): 45-53. [80] Gudmundsson J T. On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study[J]. Plasma Sources Science and Technology, 2001, 10(5): 76-81. [81] Lee C, Lieberman M A. Global model of Ar, O 2 , Cl 2 [81] and Ar/O 2 high-density plasma discharges[J]. Journal of Vacuum Science and Technology A Science, 1995, 13(2): 368-380. [82] Kim S, Lieberman M A, Lichtenberg A J. Improved volume-averaged model for steady and pulsed-power electronegative discharges[J]. Journal of Vacuum Science and Tecfunology A, 2006, 24(6): 2025-2039. [83] 刘定新. 大气压复杂冷等离子体全局模型的建模与仿真研究[D]. 西安: 西安交通大学, 2010. [84] Gonzalez E, Barankin M D, Guschl P C, et al. Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma[J]. Plasma Processes and Polymers, 2010, 7(13): 482-493. [85] Stafford D S, Kushner M J. O2(1Δ) production in He/O 2 mixtures in flowing low pressure plasmas [J]. Journal of Physics D: Applied Physics, 2004, 96(5): 2451-2465. [86] Li M, Liu D X, Yang A J, et al. Synergy of global model and fluid model for numerical study on plasmas with complex chemistry[C]. Proceedings of the 19th International Conference on Gas Discharges and Their Applications, 2012: 844-847.