Abstract:The performance and degradation of the lithium manganese (LiMn2O4, 90A·h) batteries used in pure electric buses are investigated under thermal excursion test from 25℃; through 0℃, 25℃, 40℃ and 60℃; to 25℃. In each isothermal regime, a reference performance test with charge and discharge cycles at C/20, C/3, C/2, 2C/3 and 1C is implemented to quantify battery capacity, rate capability and other performance variations. The reasons of the capacity fade caused by the thermal excursion are loss of active materials, degradation in reaction kinetics and the ohmic resistance increases. Using incremental capacity analysis to infer possible capacity fade processes, the result shows that: capacity fade has begun after the thermal excursion test from 0℃ to 40℃ and exposure to 60℃ leads to irreversible fade. It is attributed to origins including loss of active material and degradation in reaction kinetics. The experimental protocols and results are helpful in assisting the research on path dependence of battery degradation in electric vehicle applications.
马泽宇, 姜久春, 张维戈, 王占国, 郑林锋, 时玮. 锂离子动力电池热老化的路径依赖性研究[J]. 电工技术学报, 2014, 29(5): 221-227.
Ma Zeyu, Jiang Jiuchun, Zhang Weige, Wang Zhanguo, Zheng Linfeng, Shi Wei. Research on Path Dependence of Large Format LiMn2O4 Battery Degradation in Thermal Aging. Transactions of China Electrotechnical Society, 2014, 29(5): 221-227.
[1] 龚敏明, 时玮, 姜久春, 等. 纯电动公交车锂离子动力电池的使用条件控制[J]. 吉林大学学报(工学版), 2013. Gong Minming, Shi Wei, Jiang Jiuchun, et al. Operating conditions control of large format LiMn 2 O 4 battery for electric bus[J]. Journal of Jilin University (Engineering and Technology Edition), 2013. [2] 罗玉涛, 张智明, 赵克刚. 一种集散式动力电池组动态均衡管理系统[J]. 电工技术学报, 2008, 23(8): 131-136, 142. Luo Yutao, Zhang Zhiming, Zhao Kegang. A novel distributed equilibrium and management system of dynamic battery pack[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 131-136, 142. [3] 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 577-580. Wang Zhenpo, Sun Fengchun, Lin Cheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 577-580. [4] 陈大分, 姜久春, 王占国, 等. 动力锂离子电池分布参数等效电路模型研究[J]. 电工技术学报, 2013, 28(7): 169-176. Chen Dafen, Jiang Jiuchun, Wang Zhanguo, et al. Research on distribution parameters equivalent circuit model of power lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 169-176. [5] 马泽宇, 姜久春, 文锋, 等. 储能系统用梯次利用锂电池组均衡策略设计[J]. 电力系统自动化, 2013, 38(3): 106-111, 117. Ma Zeyu, Jiang Jiuchun, Wen Feng, et al. Design of equilibrium strategy of echelon use li-ion battery pack for battery energy storage system[J]. Automation of Electric Power Systems, 2013, 38(3): 106-111, 117. [6] 吴宁宁, 雷向利, 徐华, 等. 锰酸锂动力电池体系研究[J]. 北京大学学报(自然科学版). 2006, 42(S): 67-71. Wu Ningning, Lei Xiangli, Xu Hua, et al. Research on LiMn 2 O 4 -based power battery system[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(S): 67-71. [7] Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896. [8] Aoshima T, Okahara K, Kiyohara C, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature[J]. Journal of Power Sources, 2001, 97-98: 377-380. [9] Sit K, Li P K C, Ip C W, et al. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells[J]. Journal of Power Sources, 2004, 125(1): 124-134. [10] Walz K A, Johnson C S, Genthe J, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn 2 O 4 cathodes with nanoporous ZrO 2 and TiO 2 coatings[J]. Journal of Power Sources, 2010, 195(15): 4943-4951. [11] Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO 4 lithium-ion battery[J]. Journal of Power Sources, 2011, 196: 1513-1520. [12] Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications, partⅡ, degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343. [13] Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications Ⅲ, effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electro- chemical Society, 2013, 160(1): 191-199.