Signal Recognition and Experiment for Electromagnetically Induced Acoustic Emission
Zhang Chuang1, Liu Suzhen1, Yang Qingxin1, 2, Jin Liang2, Yang Sumei1
1. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China 2. Tianjin Polytechnic University Tianjin 300160 China
Abstract:Electromagnetically induced acoustic emission (EMAE) technique is a new nondestructive testing (NDT). It does nondestructive detection with the effect of dynamic electromagnetic loading to generate a stress field stimulating stress waves from the defects. The principle and implementation procedure of the EMAE is analyzed. It adopts the neural network recognition method based on wave analysis. The characteristic parameters of EMAE signal are extracted using wavelet packet transform. The recognition system of back-propagation (BP) network consists of 10 input elements, 18 hidden elements and single output. In order to overcome the shortcoming of low constringency speed, this paper proposes a kind of neural network recognition with adaptive number of neurons on the input layer method. The experiment results show it can identify the crack in the metal plate quickly and accurately.
张闯, 刘素贞, 杨庆新, 金亮, 杨素梅. 电磁声发射的实验与信号识别研究[J]. 电工技术学报, 2012, 27(4): 18-23.
Zhang Chuang, Liu Suzhen, Yang Qingxin, Jin Liang, Yang Sumei. Signal Recognition and Experiment for Electromagnetically Induced Acoustic Emission. Transactions of China Electrotechnical Society, 2012, 27(4): 18-23.
[1] 刘素贞, 杨庆新, 金亮, 等. 电磁声发射技术在无损检测中的应用研究[J]. 电工技术学报, 2009, 24(1): 23-27. Liu Suzhen, Yang Qinxin, Jin Liang. Application of electromagnetic acoustic emission technology in non-destructive testing[J]. Transactions of China Electro-technical Society, 2009, 24(1): 23-27. [2] Finkel P, Godinez V. Electromagnetic simulation of the ultrasonic signal for nondestructive detection of ferromagnetic inclusions and flaws[J]. IEEE Trans-actions on Magnetics, 2004, 40(4): 2179-2181. [3] Kim K B, Yoon D J, Jeong J C, et al. Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements[J]. NDT&E International, 2004, 37(6): 423-429. [4] Sasikumar T, RajendraBoopathy S, Usha K M, et al. Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude and energy parameter with artificial neural networks[J]. Composites Science and Technology, 2009, 69(7-8): 1151-1155. [5] Kuo C C. Artificial recognition system for defective types of transformers by acoustic emission[J]. Expert Systems with Applications, 2009, 36(7): 10304-10311. [6] Rajendraboopathy S, Sasikumar T, Usha K M, et al. Neural network prediction of failure strength of composite tensile specimens using acoustic emission counts[J]. Journal of Non Destructive Testing & Evaluation, 2008, 7(2): 21-26. [7] 颜威利, 杨庆新, 汪友华, 等. 电气工程电磁场数值计算 [M]. 北京: 机械工业出版社, 2005. [8] 陈明祥. 弹塑性力学 [M]. 北京: 科学出版社, 2007. [9] Velayudham A, Krishnamurthy R, Soundarapandian T. Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform[J]. Materials Science and Engineering A, 2005, 412: 141-145. [10] Oliveira R de, Marques A T. Health monitoring of FRP using acoustic emission and artificial neural networks[J]. Computers and Structures, 2008, 86(3-5): 367-373. [11] Leone C, Caprino G, de Iorio I. Interpreting acoustic emission signals by artificial neural networks to predict the residual strength of pre-fatigued GFRP laminates[J]. Composites Science and Technology, 2006, 66(2): 233-239.