Abstract:This paper overviews advances on permanent magnet (PM) brushless machines over last 30 years, with particular reference to new and novel machine topologies. These include current states and trends for surface-mounted and interior PM machines, electrically and mechanically adjusted variable flux PM machines including memory machine, hybrid PM machines which uniquely integrate PM technology into induction machines, switched and synchronous reluctance machines and wound field machines, Halbach PM machines, dual-rotor PM machines, and magnetically geared PM machines, etc. The paper highlights their features and applications to various market sectors.
[1] Merrill F W. Permanent magnet excited synchronous motor[J]. IEE Trans., 1955, 74: 1754-1760. [2] Honsinger V P. Performance of polyphase permanent magnet machines[J]. IEEE Trans. Power Apparatus and Systems, 1980, 99(4): 1510-1518. [3] Binns K J, Barnard W R, Jabbar M A. Hybrid PM synchronous motors[J]. Proc. IEE-B, 1978, 125(3): 203-208. [4] Binns K J, Jabbar M A, Parry G E. Choice of parameters in hybrid PM synchronous motor[J]. Proc. IEE, 1979, 126(8): 741-744. [5] Miyashita K, Yamashita S, Tanabe S, et al. Development of a high speed 2-pole permanent magnet synchronous motor[J]. IEEE Trans. on PAS, 1980, 99(6): 2175-2181. [6] Parker. R J Advances in permanent magnetism[M]. New York: John Wiley&Sons, 1990. [7] Bose B K. Power electronics and variable frequency drives[M]. New York: IEEE Press, 1997. [8] Broeck H W van Der, Skudelny H C, Stanke G V. Analysis and realization of a pulsewidth modulator based on voltage space vectors[J]. IEEE Trans. Ind. Appl., 1988, 24(1): 142-150. [9] Takahashi, Toshihiko N. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Trans. Ind. Appl., 1986, 22(5): 820-827. [10] Depenbrock M. Direct self-control of inverter-fed induction machine[J]. IEEE Trans. Power Electronics, 1988, 3(4): 420-429. [11] Vas P. Sensorless vector and direct torque control[M]. Oxford: Oxford University Press, 1998. [12] Lawrenson P J, Stephenson J M, Blenkinsop P T, et al.Variable-speed switched reluctance motors[J]. Proc. IEE-B, 1980, 127(4): 253-265. [13] Binns K J, Wong T M. Analysis and performance of a high-field PM synchronous machine[J]. Proc. IEE-B, 1984, 131(6): 252-258. [14] Rahman M A, Little T A. Dynamic performance analysis of permanent magnet synchronous motors[J]. IEEE Trans. Power Apparatus and Systems, 1984, 103(6): 1277-1282. [15] Jahns T M. Torque production in permanent magnet synchronous motor drives with rectangular current excitation[J]. IEEE Trans. Ind. Appl., 1984, 20(4) 803-813. [16] Chalmers B J, Hamed S A, Baines G D. Parameters and performances of a high-field PM synchronous motor for variable frequency operation[J]. Proc. IEE-B, 1985, 132(3): 117-124. [17] Uddin M N, Radwan T S, Rahman M A. Performance of interior permanent magnet motor drive over wide speed range[J]. IEEE Trans. Energy Conversion, 2002, 17(1):79-84. [18] Rahman M A, Little T A, Slemon G R. Analytical models for interior-type PM synchronous motors[J]. IEEE Trans. Magnetics, 1985, 21(5): 1741-1743. [19] Jahns T M, Kliman G B, Newmann T W. Interior permanent magnet synchronous motors for adjustable- speed drives[J]. IEEE Trans. Ind. Appl., 1986, 22(4): 738-747. [20] Kenjo T, Nagamori S. Permanent magnet and brushless DC motors[M]. Oxford: Clarendon Press, 1985. [21] Hendershot J R, Miller T J E. Design of brushless permanent magnet motors[M]. Oxford: Magna Physics Publishing & Clarendon Press, 1994. [22] Gieras J F, Wing M. Permannet magnet motors technology-design and application[M]. 2nd ed. New York: Marcel Dekker, 2002. [23] Takeda Y, Matsui N, Morimoto S, et al. Design and analysis of interior permanent magnet synchronous motors[M]. Tokyo: Ohmsha, 2001. [24] Bianchi N. Theory and design of fractional-slot PM machines[M]. Padova: CLEUP, 2007. [25] Zhu Z Q, Howe D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles[J].Proc. IEEE, 2007, 95(4): 746-765. [26] Zhu Z Q, Chan C C. Electrical machine topologies and technologies on electric, hybrid, and fuel cell vehicles[C]. IEEE Vehicle Power and Propulsion Conf. (VPPC), Keynote Speech- KN3, Paper No: H08787, 2008: 1-6. [27] Mecrow B C, Jack A G, Atkinson D J, et al. Design and testing of a four-phase fault-tolerant permanent- magnet machine for an engine fuel pump[J]. IEEE Trans. Energy Conv., 2004, 19(4): 671-678. [28] Polinder H, F F A van der Pijl, G J de Vilder, et al. Comparison of direct-drive and geared generator concepts for wind turbines[J]. IEEE Trans. Energy Conv., 2006, 21(3): 725-733. [29] Hesmondhalgh D E, Tipping D, Amrani M. Design and construction of a high-speed high performance direct-drive hand piece[J]. Proc. IEE-B, 1987, 134: 286-294. [30] Ede J D, Zhu Z Q, Howe D. Rotor resonances of high-speed permanent-magnet brushless machines[J]. IEEE Trans. Ind. Appl., 2002, 38(6): 1543-1548. [31] Paulides J H, Jewell G W, Howe D. An evaluation of alternative stator lamination materials for a high- speed, 1.5MW, permanent magnet generator[J]. IEEE Trans. Magnetics, 2004, 40(4):2041-2043. [32] Zhu Z Q, Ede J D, Howe D. Design of high-speed brushless dc motors for sensorless operation[C]. Proc. 16th Int. Conf. on Electrical Machines, ICEM 2004, Cracow, Poland, Paper No: 235, CD ROM. [33] Bianchi N, Bolognani S, Luise F. Analysis and design of a PM brushless motor for high-speed operations[J]. IEEE Trans. Energy Conv., 2005, 20(3): 629-637. [34] Binder A, Schneider T, Klohr M. Fixation of buried and surface-mounted magnets in high-speed perma- nent-magnet synchronous machines[J]. IEEE Trans. Ind. Appl., 2006, 42(4): 1031-1037. [35] Kolondzovski Z, Arkkio A, Larjola J, et al. Power limits of high-speed permanent-magnet electrical machines for compressor applications[J]. IEEE Trans. Energy Conv., 2011, 26(1): 73-82. [36] Guglielmi P, Pastorelli M, Vagati A. Cross saturation effects in IPM motors and related impact on zero- speed sensorless control[J]. IEEE Trans. Ind. Appl, 2006, 42 (6): 1516-1522. [37] Bianchi N, Bolognami S, Jang J H, et al.Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection[J]. IEEE Trans. Power Electronics, 2007, 22(6): 2466-2475. [38] Li Y, Zhu Z Q, Howe D, et al. Improved rotor position estimation by signal Injection in brushless AC motors, accounting for cross-coupling magnetic saturation[J]. IEEE Trans. Ind. Appl., 2009, 45(5): 1843-1849. [39] Zhu Z Q, Gong L M. Investigation of effectiveness of sensorless operation in carrier signal injection-based sensorless control methods[J]. IEEE Trans. Industrial Electronics, 2011, 58(8): 3431-3439. [40] Gong L M, Zhu Z Q. Modeling and compensation of inverter nonlinearity effects in carrier signal injection-based sensorless control methods from positive sequence carrier current distortion[J]. IEEE Trans. on Ind. Appl., 2011, 47(3): 1283-1292. [41] Jahns T M. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive [J]. IEEE Trans. Ind. Appl., 1987, 23(4): 681-689, 1987. [42] Bose B K. A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine[J].IEEE Trans. Ind. Appl., 1988, 24(6): 987-997. [43] Schiferl R, Lipo T A. Power capability of salient pole permanent magnet synchronous motors in variable speed drive[J]. IEEE Trans. Ind. Appl., 1990, 26(1): 115-123. [44] Soong W L, Miller T J E. Field-weakening performance of brushless synchronous AC motor drives[J]. Proc. IEE-EPA, 1994, 141: 331-340. [45] Morimoto S, Sanada M, Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J]. IEEE Trans. Ind. Appl., 1994, 30(4): 920-926. [46] Morimoto S, Sanada M, Takeda Y. Inverter-driven synchronous motors for constant power[J]. IEEE Ind. Appl. Magazine, 1996, 2(6): 18-24. [47] Vaez S, John V I, Rahman M A. An on-line loss minimization controller for interior permanent magnet motor drives[J]. IEEE Trans. Energy Conv., 1999, 14(4): 1435-1440. [48] Cros J, Viarouge P. Synthesis of high performance PM machines with concentrated windings[J]. IEEE Trans. Energy Conv., 2002, 17(2): 248-253. [49] El-Refaie A M. Fractional-slot concentrated winding synchronous permanent magnet machines: opportunities and challenges[J].IEEE Trans. Industrial Elec- tronics, 2010, 57(1): 107-121. [50] Zhu Z Q. Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems[J]. Int. Journal for Computation and Mathematics in Elec. and Elect. Eng. (COMPEL), 2011, 30(1): 9-31. [51] Refaie A M El, Jahns T M. Optimal flux-weakening in surface PM machines using concentrated windings[J]. IEEE Trans. Ind. Appl., 2005, 41(3):790-800. [52] Mecrow C, Jack A G, Haylock J A. Fault tolerant permanent magnet motors drives[J]. Proc. IEE-EPA, 1996, 143(6): 433-437. [53] Jack G, Mecrow B C, Haylock J A. A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications[J]. IEEE Trans. Ind. Appl., 1996, 32(4): 889-895. [54] Spooner E, Khatab S A W, Nicolaou N G. Hybrid excitation of AC and DC machines[C]. Proc. IEE Int. Conf. Electrical Machines and Drives, 1989: 48-52. [55] Sugii Y, Yada M, Koga S. Applicability of various motors to electric vehicles[C]. Proc. 13th Int. Electric Vehicles Symp., 1996: 757-764. [56] Tapia J A, Leonardi F, Lipo T A. Consequent pole permanent magnet machine with field weakening capability[C]. Proc. IEEE Electric Machines and Drives Conference, 2001: 126-131. [57] Chan C C, Zhang R, Chau K T, et al.A novel brushless PM hybrid motor with a claw-type rotor topology for electric vehicles[C]. Proc. 13th International Electric Vehicle Symposium, 1996, II: 579-584. [58] Chan C C, Zhuang R, Chau K T, et al. Optimal efficiency control of PM hybrid motor drives for electric vehicles[C]. Proc. IEEE Power Electronics Specialists Conference, 1997: 363-368. [59] Luo X, Lipo T A. A synchronous/permanent magnet hybrid AC machine[J]. IEEE Trans. Energy Conv., 2000, 15(2): 203-210. [60] Leonardi F, Matsuo T, Li T Y, et al. Design considerations and test results for a doubly salient PM motor with flux control[C]. IEEE Ind. Appl. Society Annual Meeting, 1996: 458-463. [61] Hoang E, Lecrivain M, Gabsi M. A new structure of a switching flux synchronous polyphased machine with hybrid excitation[C]. Proc. European Conf. Power Electronics and Applications, 2007: 1-8. [62] Amara Y, Vido L, Gabsi M, et al. Hybrid excitation synchronous machines: energy efficient solution for vehicle propulsion[J]. IEEE Trans. Vehicular Technology, 2009, 58 (5): 2137-2149. [63] Chen J T, Zhu Z Q, Iwasaki S, et al.A novel hybrid excited switched-flux brushless AC machine for EV/HEV applications[J]. IEEE Trans. Vehicular Technology, 2011, 60(4): 1365-1373. [64] Owen R, Zhu Z Q, Wang J B, et al. Review of variable-flux permanent magnet machines[C]. Int. Conf. on Elec. Machines and Systems, 2011, Beijing, China, paper PS-PMM-60. [65] Ostovic V. Memory motors[J]. IEEE Trans. Ind. Appl., 2003, 99(1): 52-61. [66] Yu C, Chau K T. Design, analysis, and control of DC-excited memory motors[J]. IEEE Trans. Energy Conv., 2011, 26(2): 479-489. [67] Honda Y, Higaki T, Morimoto S, et al, Rotor design optimisation of a multi-layer interior permanent- magnet synchronous motor[J]. Proc. IEE-EPA, 1998, 145(2): 119-124. [68] Soong W L, Staton D A, Miller T J E. Design of a new axially laminated interior permanent magnet motor[J]. IEEE Trans. Ind. Appl., 1995, 31 (2): 358-367. [69] Lipo T A. Synchronous reluctance machines-a viable alternative for AC drives? [J]. Electric Machines and Power Systems, 1991, 19(6): 659-671. [70] Vagati, Pellegrino G, Guglielmi P. Design tradeoffs between constant power speed range, uncontrolled generator operation and rated current of IPM motor drives[C]. 2010 IEEE Energy Conversion Congress and Exposition (ECCE), 2010: 4107-4114. [71] Armando, Guglielmi P, Pellegrino G, et al.Accurate magnetic modelling and performance analysis of IPM-PMASR motors[C]. 2007 IEEE Ind. Appl. Society Annual Meeting, 2007: 133-140. [72] Liao Y, Liang F, Lipo T A. A novel permanent magnet machine with doubly salient structure[J]. IEEE Trans. Ind. Appl., 1995, 3(5): 1069-1078. [73] Deodhar R P, Andersson S, Boldea I, et al. The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine[J]. IEEE Trans. Ind. Appl., 1997, 33(4): 925-934. [74] Zhu Z Q, Chen J T. Advanced flux-switching permanent magnet brushless machines[J]. IEEE Trans. Magnetics, 2010, 46(6): 1447-1453. [75] Zhu Z Q. Recent development of Halbach permanent magnet machines and applications[C]. The 4th Power Conversion Conference, JIEE, IEEE-IAS, 2-5 April 2007, Nagoya, Japan, 2007: K9-K16. [76] Atallah K, Howe D. The application of Halbach cylinders to brushless AC servo motors[J].IEEE Trans Magnetics, 1998, 34(1):2060-2062. [77] Jack A G, Mecrow B C, Dickinson P G, et al.Permanent-magnet machines with powdered iron cores and pre-pressed windings[J]. IEEE Trans. Ind. Appl., 2000, 36(4):1077-1083. [78] Weh H, May H. Achievable force densities for permanent magnet excited machines in new configurations[C]. Proc. Int. Conf. Electrical Machines, 1986: 1107-1111. [79] Weh H, Hoffmann H, Landrath J. New permanent magnet excited synchronous machine with high efficiency at low speed[C]. Proc. Int. Conf. Electrical Machines, 1988: 1-6. [80] Xu L Y. A new breed of electric machines - basic analysis and applications of dual mechanical port electric machines[C]. Keynote Speech, International Conference on Electrical Machines and Systems, 2005. [81] Atallah K, Rens J, Mezani S, et al. A novel ‘Pseudo’ direct-drive brushless permanent magnet machine[J]. IEEE Trans. Magnetics, 2008, 44(2):4349-4352.