Abstract:In order to effectively dispose multi-variable and multi-dimention problems of long-term scheduling of cascade hydro-plant. Cultural algorithm (CA) is applied to the optimization problem for the first time. By using of evolutionary programming (EP) model in population space, the situation knowledge and the normative knowledge in belief space are constitued by refining and reasoning the experiences of excellent population that transmitted by the accept() function, and through injecting small disturbed signal, the possible coming problem of local convergence was solved in belief space. which in turn to guide population evolution by influence function in population space. A detailed long-term scheduling mathematical model based on annual maximum electric power output of cascaded Hydro-Plant is constructed, which includes mathematical model of characteristic water head and reservoir water volume. The simulation result for three hydro-plants demonstrates that CA has more powerful global, local searching ability and more fast convergence velocity than adaptive weight particle swarm optimization algorithm I (AWPSO-I), adaptive weight particle swarm optimization algorithm I (AWPSO-II) and chaotic particle swarm optimization algorithm (CPSO). The scheduling results can increase 2.32 and 0.51 hundred million kW· h compared to AWPSO-II and CPSO. The CA can offer a new optimization method and thought for large-scale cascaded Hydro-Plant scheduling.
吴杰康, 孔繁镍. 文化算法及其在梯级水电站长期优化调度中的应用[J]. 电工技术学报, 2011, 26(3): 182-190.
Wu Jiekang, Kong Fannie. Cultural Algorithm and Its Application in Long-Term Optimization Scheduling of Cascaded Hydro-Plants. Transactions of China Electrotechnical Society, 2011, 26(3): 182-190.
[1] Mousavi S J, Karamouz M. Computational improve- ment for dynamic programming models by diagnosing infeasible storage combinations[J]. Advances in Water Resources, 2003, 26(21): 851-859. [2] 王双银, 刘俊民. 综合利用水库兴利调度的二次优化法[J]. 水力发电学报, 2007, 26(3): 11-16. [3] Arnold E, Tatjewski P, Wolochowicz P. Two methods for large-scale nonlinear optimization and their comparison on a case study of hydropower optimization[J]. Journal of Optimization Theory and Applications, 1994, 81(2): 221-248. [4] 王金文, 袁晓辉, 张勇传. 随机动态规划在三峡梯级长期发电优化调度中的应用[J]. 电力自动化设备, 2002, 22(8): 54-56. [5] 曾勇红, 姜铁兵, 张勇传. 三峡梯级水电站蓄能最大长期优化调度模型及分解算法[J]. 电网技术, 2004, 28(10): 5-8. [6] 赵庆波, 孙岚. 基于拉格朗日松弛法的优化调度系统[J]. 电力系统自动化, 2004, 28(18): 76-79. [7] 左幸, 马光文, 过夏明. 三角旋回算法求解梯级电站群短期优化调度[J]. 电力系统自动化, 2006, 30(13): 28-32. [8] 武新宇, 程春田, 廖胜利, 等. 两阶段粒子群算法在水电站群优化调度中的应用[J]. 电网技术, 2006, 30(20): 25-28. [9] Naresh R, Sharma J. Hydro system scheduling using ANN aproach[J]. IEEE Trans. on power systems, 2000, 15(1): 388-395. [10] 胡国强, 贺仁睦. 基于自适应蚁群算法的水电站水库优化调度[J]. 中国电力, 2007, 40(7): 48-50. [11] Reynolds R G. An introduction to cultural algorithm[C]. Proceeding of the Third Annual Conference on Evolutionary Programming, World Scientific, River Edge, NewJersey:[s. n], 1994: 137-139 [12] Becerra R L, Coello C A. A cultural algorithm with differentional evolution to solve constrained optimization problems[J]. IBERAMIA, 2004, LNAI3315: 881-890. [13] Jin X, Reynolds R G. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach[A]. Congress on Evolutionry Computation, IEEE Service Center, 1999: 1672-1678. [14] 齐仲纪, 刘漫丹. 文化算法研究[J]. 计算机技术与发展, 2008, 18(5): 126-129. [15] 张春先, 庄凤庭. 基于进化规划的文化算法[J]. 江南大学学报(自然科学版), 2007, 6(6): 782-786. [16] 罗强, 李瑞浴, 易东云. 基于模糊文化算法的自适应粒子群优化[J]. 计算机工程与科学, 2008, 30(1): 97-100. [17] 吴英, 金从友. 基于文化算法的电力系统无功优化研究[J]. 现代电力, 2008, 25(3): 36-41. [18] 黄海燕, 顾幸生, 刘漫丹. 求解约束优化问题的文化算法[J]. 自动化学报, 2007, 33(10): 1115-1119. [19] 吴杰康, 朱建全. 机会约束规划下的梯级水电站短期优化调度策略[J]. 中国电机工程学报, 2008, 28(13): 41-46. [20] Xidong Jin. Solving constrained optimization problems using cultural algorithms and regional schemata[D]. Wayne State University, 2001. [21] Binghui Yu, Xiaohui Yuan. Short-term hydro-thermal scheduling using particle swarm optimization method[J]. Energy Conversion and Management, 2007, 48(22): 1902-1908. [22] Chuanwen J, Bompard E. A self-adaptive chaotic particle swarm optimization algorithm for short-term hydroelectric system scheduling in deregulation envoirnment[J]. Energy Conversion and Management, 2005, 46(32): 2689-2696. [23] 蒙文川, 邱家驹. 电力系统经济负荷分配的混沌粒子群算法[J]. 电力系统及其自动化学报, 2007, 19(2): 114-119.