| [1] 杨德健, 王鑫, 严干贵, 等. 计及调频死区的柔性风储联合频率控制策略[J]. 电工技术学报, 2023, 38(17): 4646-4656.
Yang Dejian, Wang Xin, Yan Gangui, et al.Flexible frequency regulation scheme of DFIG embed battery energy storage system considering deadbands[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4646-4656(in Chinese).
[2] 董清, 张睿哲, 颜湘武, 等. 计及轴系疲劳载荷的风储联合一次调频控制策略[J/OL]. 电工技术学报, 2025.
Dong Qing, Zhang Ruizhe, Yan Xiangwu, et al.A primary frequency control strategy for wind-storage combined systems considering shaft fatigue loads[J/OL]. Transactions of China Electrotechnical Society, 2025(in Chinese).
[3] 姚雅涵, 姚伟, 熊永新, 等. 经多端直流并网的海上风电场调频协同控制和风机转速恢复策略[J]. 高电压技术, 2021, 47(10): 3537-3547.
Yao Yahan, Yao Wei, Xiong Yongxin, et al.Coordinated frequency support and wind turbine preset restoration scheme of VSC-MTDC integrated offshore wind farms[J]. High Voltage Engineering, 2021, 47(10): 3537-3547(in Chinese).
[4] 安军, 李可心, 周毅博, 等. 面向抑制频率波动的新型电力系统调频能力需求评估[J/OL].电工技术学报, 2025.
An Jun, Li Kexin, Zhou Yibo, et al.Frequency fluctuation suppression-oriented evaluation of frequency regulation capability requirements for new-type power systems[J/OL]. Transactions of China Electrotechnical Society, 2025(in Chinese).
[5] 姚伟, 熊永新, 姚雅涵, 等. 海上风电柔直并网系统调频控制综述[J]. 高电压技术, 2021, 47(10): 3397-3413.
Yao Wei, Xiong Yongxin, Yao Yahan, et al.Review of voltage source converter-based high voltage direct current integrated offshore wind farm on providing frequency support control[J]. High Voltage Engineering, 2021, 47(10): 3397-3413.
[6] 胡源, 薛松, 张寒, 等. 近30年全球大停电事故发生的深层次原因分析及启示[J]. 中国电力, 2021, 54(10): 204-210.
Hu Yuan, Xue Song, Zhang Han, et al.Cause analysis and enlightenment of global blackouts in the Past 30 Years[J]. Electric Power, 2021, 54(10): 204-210(in Chinese).
[7] Li L, Zhu D, Zou X, et al.Review of frequency regulation requirements for wind power plants in international grid codes[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113731.
[8] 肖亮, 陈亦平, 伍阳阳, 等. 风电场快速调频技术的工程实践及关键参数取值[J]. 高电压技术, 2023, 49(06): 2536-2548.
Xiao Liang, Chen Yiping, Wu Yangyang, et al.Engineering practice and key parameter selection for fast frequency regulation technology of wind farms[J]. High Voltage Engineering, 2023, 49(6): 2536-2545(in Chinese).
[9] 张萍, 邸宏亮, 胡龙, 等. 基于分层自适应控制的混合储能参与二次调频控制策略[J/OL]. 发电技术, 2025.
Zhang Ping, Di Hongliang, Hu Long, et al.Hybrid energy storage participation in secondary frequency regulation control strategy based on hierarchical adaptive control[J/OL]. Power Generation Technology, 2025(in Chinese).
[10] 李可心, 安军, 石岩, 等. 基于可用调频能量的风电机组综合虚拟惯性控制参数整定[J]. 电工技术学报, 2025, 40(05): 1382-1394.
Li Kexin, An Jun, Shi Yan, et al.An Integrated Virtual Inertia Control Parameter Setting Method for Wind Turbine Based on Available Frequency Regulation Energy[J]. Transactions of China Electrotechnical Society, 2025, 40(05): 1382-1394(in Chinese).
[11] 毛志宇, 李培强, 肖家杰, 等. 面向风功率波动平抑的电池储能双层协调控制策略[J]. 中国电机工程学报, 2024, 44(16): 6494-6507.
Mao Zhiyu, Li Peiqiang, Xiao Jiajie, et al.Coordinated two-layer control strategy of battery energy storage for wind power fluctuate mitigation[J]. Proceedings of the CSEE, 2024, 44(16): 6494-6506(in Chinese).
[12] 毛志宇, 李培强, 马德鑫, 等. 基于风功率波动平抑的复合储能两次功率分配容量配置方法研究[J]. 电网技术, 2023, 47(10): 4111-4123.
Mao Zhiyu, Li Peiqiang, Ma Dexin, et al.Double power allocation of capacity configuration of compound energy storage based on wind power smoothing[J]. Power System Technology, 2023, 47(10): 4111-4120(in Chinese).
[13] 常樊睿, 李勇, 彭衍建, 等. 计及多储能单元出力水平的风功率波动平抑控制方法[J]. 高电压技术, 2024, 50(01): 182-193.
Chang Fanrui, Li Yong, Peng Yanjian, et al.A control method for smoothing wind power fluctuation with multiple energy storage unit output levels[J]. High Voltage Engineering, 2024, 50(1): 182-193(in Chinese).
[14] 贺彬, 任永峰, 贾伟青, 等. 储能MPC平抑分散式风电并网功率波动策略研究[J]. 太阳能学报, 2024, 45(06): 132-139.
HE Bin, Ren Yongfeng, Jia Weiqing, et al.Strategy of energy storage MPC to smooth grid-connected power fluctuation of distributed wind power[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 132-139(in Chinese).
[15] 王琦, 郭钰锋, 万杰, 等. 适用于高风电渗透率电力系统的火电机组一次调频策略[J]. 中国电机工程学报, 2018, 38(4): 974-984.
Wang Qi, Guo Yufeng, Wan Jie, et al.Primary frequency regulation strategy of thermal units for a power system with high penetration wind power[J]. Proceedings of the CSEE, 2018, 38(4): 974-984(in Chinese).
[16] 王秀丽, 段子越, 孟永庆, 等. 分频输电系统运行特性与控制策略综述[J]. 高电压技术, 2023, 49(09): 3696-3707.
Wang Xiuli, Duan Ziyue, Meng Yongqing, et al.Review on operational characteristics and control strategies of fractional frequency transmission systems[J]. High Voltage Engineering, 2023, 49(9): 3696-3707(in Chinese).
[17] 苏嘉豪, 蔺红, 樊艳芳. 基于变下垂系数的风电全直流输电系统一次调频协调控制策略[J]. 电力系统保护与控制, 2024, 52(08): 55-64.
Su Jiahao, Lin Hong, Fan Yanfang.Primary frequency regulation coordination control strategy of a wind power all-DC transmission system based on variable droop coefficient[J]. Power System Protection and Control, 2024, 52(8): 55-64(in Chinese).
[18] Lyu X, Jia Y, Dong Z.Adaptive frequency responsive control for wind farm considering wake interaction[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(5): 1066-1075.
[19] Lyu X, Jia Y, Xu Z.A novel control strategy for wind farm active power regulation considering wake interaction[J]. IEEE Transactions on Sustainable Energy, 2019, 11(2): 618-628.
[20] Jeon H, Kang Y C, Park J W, et al.PI control loop-based frequency smoothing of a doubly-fed induction generator[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1811-1819.
[21] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(08): 1750-1759.
Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759(in Chinese).
[22] 葛胜升, 王鹏, 施凯. 基于二阶线性自抗扰的虚拟同步发电机二次调频控制[J]. 电力系统及其自动化学报, 2022, 34(10): 81-88.
Ge Shengsheng, Wang Peng, Shi Kai.Secondary frequency regulation control of virtual synchronous generator based on second-order linear active disturbance rejection control[J]. Proceedings of the CSU-EPSA, 2022, 34(10): 81-88(in Chinese).
[23] 易衡, 张雄, 黄宇. 基于VGSM-LADRC的储能-火电协同调频控制策略[J]. 电力系统自动化, 2023, 47(21): 147-155.
Yi Heng, Zhang Xiong, Huang Yu.Coordinated frequency regulation control strategy for energy storage and thermal power based on variable gain slide model and linear active disturbance rejection controller[J]. Automation of Electric Power Systems, 2023, 47(21): 147-155(in Chinese).
[24] 姚文龙, 裴春博, 池荣虎, 等. 基于无模型自适应控制的船舶微电网二次调频控制策略[J]. 电机与控制学报, 2023, 27(03): 135-146.
Yao Wenlong, Pei Chunbo, Chi Ronghu, et al.Secondary frequency modulation control strategy of ship microgridwith model-free adaptive control[J]. Electric Machines and Control, 2023, 27(03): 135-146(in Chinese).
[25] Ménard T, Moulay E,Perruquetti W.Fixed-time observer with simple gains for uncertain systems[J]. Automatica, 2017, 81: 438-446.
[26] 齐军, 陈磊, 闵勇, 等. 虚拟惯量控制响应延时对控制效果的影响分析[J]. 智慧电力, 2022, 50(06): 1-7(in Chinese).
Qi Jun, Chen Lei, Min Yong, et al.Influence of virtual inertia control response delay on control effect[J]. Smart Power, 2022, 50(06): 1-7.
[27] Bhat S P,Bernstein D S.Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals and Systems, 2005, 17: 101-127.
[28] lEEE Committee Report. Dynamic models for steam and hydro turbines in power system studies[J]. IEEE Transactions on Power Apparatus and Systems, 1973, 92(6): 1904-1915.
[29] Kim Y, Kang M, Muljadi E, et al.Power smoothing of a variable-speed wind turbine generator in association with the rotor-speed-dependent gain[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 990-999.
[30] Zheng C,Li H.Mitigation of subsynchronous control interaction in DFIGs using active disturbance rejection control[J]. IET Generation, Transmission & Distribution, 2021, 15(20): 2915-2925. |